Виды электротока, условия протекания
Частицы, несущие заряд, могут перемещаться в толще проводника беспорядочно или целенаправленно двигаться в определенном направлении. Во втором случае говорят о наличии электрического тока. Основная его характеристика – наличие вектора перемещения. Вектор токового движения идентичен направлению заряженных частиц.
Хаотичное и направленное перемещение заряженных частиц
Важно! Токовый ход может быть постоянным и переменным. В первом случае поток частиц перемещается четко в одном направлении по прямой, без колебаний и возмущений
Во втором – имеют место синусоидальные колебания с определенной частотой. Для трансформации (выпрямления) переменного электротока применяют специальные устройства. Вообще для существования константного тока требуется, чтобы с одного конца проводникового элемента все время имел место избыток отрицательно заряженных частиц, а со второго – дефицит. Также требуется сила, которая будет эти заряды перемещать.
Переменный ток, в противоположность постоянному, не требует соблюдения полярности. В отличие от постоянного, он имеет частоту – так называется количество смен направления перемещения частиц за единицу времени. В стандартной бытовой сети число таких смен равно 50 в секунду. Различные приборы, питающиеся от аккумуляторных элементов и батарей, а также бытовая техника, ноутбуки, стационарные компьютеры потребляют постоянный электроток. Сама батарея является генератором постоянного токового хода, но его можно инвертировать в переменный с помощью специальных устройств.
Ток, вызываемый электрополем, принято называть током проводимости. Элементарные частицы, переносящие заряд, отличаются у разных типов проводниковых материалов. В случае металлических элементов это свободные электроны, у части полупроводниковых материалов – целенаправленно движущиеся ионы. В электролитах (в том числе применяемых в аккумуляторных батареях) ионы с плюсовым и минусовым зарядами движутся в разные стороны. Последнее характерно для всех проводников, представляющих собой жидкости.
В конвекционном электротоке электроны перемещаются под действием инерции. Еще одна разновидность тока – протекающий в вакуумных условиях (такое явление применяется в электронных лампочках). Основными характеристиками электротока являются сила и плотность тока.
Направленное перемещение электронов в проводнике
Условия теплоотдачи
Важным условием тепловой отдачи считается влажная среда, в которой находится кабель. При размещении провода в грунте теплоотвод напрямую связан со структурой и его составом, а также уровнем влажности.
Для получения наиболее точных величин придется проанализировать состав почвы, в зависимости от которого будет разным сопротивление. При помощи таблицы ищут удельное сопротивление. Благодаря качественной утрамбовке данная характеристика может быть уменьшена. Песок и гравий обладают меньшей теплопроводностью по сравнению с глиной, поэтому в идеале провода засыпают последней. Вместо глины можно использовать суглинок без примесей шлака, камней и мусора.
Важно помнить о разных условиях охлаждения кабеля с изоляцией и без нее. В первом случае тепловые потоки, исходящие при нагреве жил, вынуждены преодолевать дополнительный барьер в виде изоляционного слоя
Расположение кабеля в траншее
При подземной укладке кабеля, когда в одной траншее расположено сразу два проводника, процесс охлаждения существенно замедлится, что приведет к снижению допустимые токовых нагрузок.
С точки зрения электрической и пожарной безопасности, определение правильных длительно допустимого тока и сечения кабеля — важное условие, позволяющее исключить перегревы, нарушение изоляции и воспламенение кабельной линии. При расчетах следует быть внимательными и учесть множество дополнительных условий
Определенные корректировки нужны даже для табличных значений.
Как рассчитать сечение по току?
Табличные значения не могут учесть индивидуальных особенностей устройства и эксплуатации сети. Специфика у таблиц среднестатистическая. Не приведены в них параметры максимально допустимых для конкретного кабеля токов, а ведь они отличаются у продукции с разными марками. Весьма поверхностно затронут в таблицах тип прокладки. Дотошным мастерам, отвергающим легкий путь поиска по таблицам, лучше воспользоваться способом расчетаразмера сечения провода по току. Точнее по его плотности.
Допустимая и рабочая плотность тока
Начнем с освоения азов: запомним на практике выведенный интервал 6 — 10. Это значения, полученные электриками многолетним «опытным путем». В указанных пределах варьирует сила тока, протекающего по 1 мм² медной жилы. Т.е. кабель с медной сердцевиной сечением 1 мм² без перегрева и оплавления изоляции предоставляет возможность току от 6 до 10 А спокойно достигать ожидающего его агрегата-потребителя. Разберемся, откуда взялась и что означает обозначенная интервальная вилка.
Согласно кодексу электрических законов ПУЭ 40% отводится кабелю на неопасный для его оболочки перегрев, значит:
- 6 А, распределенные на 1 мм² токоведущей сердцевины, являются нормальной рабочей плотностью тока. В данных условиях проводник работать может бесконечно долго без каких-либо ограничений по времени;
- 10 А, распределенные на 1 мм² медной жилы, протекать по проводнику могут краткосрочно. Например, при включении прибора.
Потоку энергии 12 А в медном миллиметровом канале будет изначально «тесно». От тесноты и толкучки электронов увеличится плотность тока. Следом повысится температура медной составляющей, что неизменно отразиться на состоянии изоляционной оболочки.
Обратите внимание, что для кабеля с алюминиевой токоведущей жилой плотность тока отображает интервал 4 – 6 Ампер, приходящийся на 1 мм² проводника. Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А
Следовательно:
Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:
- кабель с жилой сечением 2,5 мм² сможет транспортировать ток в 25 А всего лишь несколько десятых секунды во время включения техники;
- он же бесконечно долго сможет передавать ток в 15А.
Приведенные выше значения плотности тока действительны для открытой проводки. Если кабель прокладывается в стене, в металлической гильзе или в пластиковом кабель канале, указанную величину плотности тока нужно помножить на поправочный коэффициент 0,8. Запомните и еще одну тонкость в организации открытого типа проводки. Из соображений механической прочности кабель с сечением меньше 4 мм² в открытых схемах не используют.
Изучение схемы расчета
Суперсложных вычислений снова не будет, расчет провода по предстоящей нагрузке предельно прост.
- Сначала найдем предельно допустимую нагрузку. Для этого суммируем мощность приборов, которые предполагаем одновременно подключать к линии. Сложим, например, мощность стиральной машины 2000 Вт, фена 1000 Вт и произвольно какого-либо обогревателя 1500 Вт. Получили мы 4500 Вт или 4,5 кВт.
- Затем делим наш результат на стандартную величину напряжения бытовой сети 220 В. Мы получили 20,45…А, округляем до целого числа, как положено, в большую сторону.
- Далее вводим поправочный коэффициент, если в нем есть необходимость. Значение с коэффициентом будет равно 16,8, округленно 17 А, без коэффициента 21 А.
- Вспоминаем о том, что рассчитывали рабочие параметры мощности, а нужно еще учесть предельно допустимое значение. Для этого вычисленную нами силу тока умножаем на 1,4, ведь поправка на тепловое воздействие 40%. Получили: 23,8 А и 29,4 А соответственно.
- Значит, в нашем примере для безопасной работы открытой проводки потребуется кабель с сечением более 3 мм², а для скрытого варианта 2,5 мм².
Не забудем о том, что в силу разнообразных обстоятельств порой включаем одновременно больше агрегатов, чем рассчитывали. Что есть еще лампочки и прочие приборы, незначительно потребляющие энергию
Запасемся некоторым резервом сечения на случай увеличения парка бытовой техники и с расчетами отправимся за важной покупкой
Открытая и закрытая прокладка проводов
Как все мы знаем, при прохождении тока по проводнику он нагревается. Чем больше ток, тем больше тепла выделяется. Но, при прохождении одного и того же тока, по проводникам, с разным сечением, количество выделяемого тепла изменяется: чем меньше сечение, тем больше выделяется тепла.
В связи с этим, при открытой прокладке проводников его сечение может быть меньше — он быстрее остывает, так как тепло передается воздуху. При этом проводник быстрее остывает, изоляция не испортится. При закрытой прокладке ситуация хуже — медленнее отводится тепло. Потому для закрытой прокладке — в кабель каналах, трубах, в стене — рекомендуют брать кабель большего сечения.
Выбор сечения кабеля с учетом типа его прокладки также можно провести при помощи таблицы. Принцип описывали раньше, ничего не изменяется. Просто учитывается еще один фактор.
Выбор сечения кабеля в зависимости от мощности и типа прокладки
И напоследок несколько практических советов. Отправляясь на рынок за кабелем, возьмите с собой штангенциркуль . Слишком часто заявленное сечение не совпадает с реальностью. Разница может быть в 30-40%, а это очень много. Чем вам это грозит? Выгоранием проводки со всеми вытекающими последствиями. Потому лучше прямо на месте проверять действительно ли у данного кабеля требуемое сечение жилы (диаметры и соответствующие сечения кабеля есть в таблице выше). А подробнее про определение сечения кабеля по его диаметру можно прочесть тут.
Расчет сечения провода электропроводки по мощности подключаемых электроприборов
Для выбора сечения жил провода кабеля при прокладке электропроводки в квартире или доме нужно проанализировать парк имеющихся электробытовых приборов с точки зрения одновременного их использования. В таблице представлен перечень популярных бытовых электроприборов с указанием потребляемого тока в зависимости от мощности.
Вы можете узнать потребляемую мощность своих моделей самостоятельно из этикеток на самих изделиях или паспортам, часто параметры указывают на упаковке. В случае если сила потребляемого тока электроприбором не известна, то ее можно измерять с помощью амперметра.
Обычно мощность потребления электроприборов указывается на корпусе в ваттах (Вт или VA) или киловаттах (кВт или kVA). 1 кВт=1000 Вт.
Таблица потребляемой мощности/силы тока бытовыми электроприборами
Электроприбор | Потребляемая мощность, Вт | Сила тока, А |
---|---|---|
Стиральная машина | 2000 – 2500 | 9,0 – 11,4 |
Джакузи | 2000 – 2500 | 9,0 – 11,4 |
Электроподогрев пола | 800 – 1400 | 3,6 – 6,4 |
Стационарная электрическая плита | 4500 – 8500 | 20,5 – 38,6 |
СВЧ печь | 900 – 1300 | 4,1 – 5,9 |
Посудомоечная машина | 2000 – 2500 | 9,0 – 11,4 |
Морозильники, холодильники | 140 – 300 | 0,6 – 1,4 |
Мясорубка с электроприводом | 1100 – 1200 | 5,0 – 5,5 |
Электрочайник | 1850 – 2000 | 8,4 – 9,0 |
Электрическая кофеварка | 630 – 1200 | 3,0 – 5,5 |
Соковыжималка | 240 – 360 | 1,1 – 1,6 |
Тостер | 640 – 1100 | 2,9 – 5,0 |
Миксер | 250 – 400 | 1,1 – 1,8 |
Фен | 400 – 1600 | 1,8 – 7,3 |
Утюг | 900 –1700 | 4,1 – 7,7 |
Пылесос | 680 – 1400 | 3,1 – 6,4 |
Вентилятор | 250 – 400 | 1,0 – 1,8 |
Телевизор | 125 – 180 | 0,6 – 0,8 |
Радиоаппаратура | 70 – 100 | 0,3 – 0,5 |
Приборы освещения | 20 – 100 | 0,1 – 0,4 |
Ток потребляют еще холодильник, осветительные приборы, радиотелефон, зарядные устройства, телевизор в дежурном состоянии. Но в сумме эта мощность составляет не более 100 Вт и при расчетах ее можно не учитывать.
Если Вы включите все имеющиеся в доме электроприборы одновременно, то необходимо будет выбрать сечение провода, способное пропустить ток 160 А. Провод понадобится толщиной в палец! Но такой случай маловероятен. Трудно представить, что кто-то способен одновременно молоть мясо, гладить утюгом, пылесосить и сушить волосы.
Пример расчета. Вы встали утром, включили электрочайник, микроволновую печь, тостер и кофеварку. Потребляемый ток соответственно составит:
7 А + 8 А + 3 А + 4 А = 22 А
С учетом включенного освещения, холодильника и в дополнение, например, телевизора, потребляемый ток может достигнуть 25 А.
Выбор сечения провода для подключения электроприборов к трехфазной сети 380 В
При работе электроприборов, например, электродвигателя, подключенных к трехфазной сети, потребляемый ток протекает уже не по двум проводам, а по трем и, следовательно, величина протекающего тока в каждом отдельном проводе несколько меньше. Это позволяет использовать для подключения электроприборов к трехфазной сети провод меньшего сечения.
Для подключения электроприборов к трехфазной сети напряжением 380 В, например электродвигателя, сечение провода для каждой фазы берется в 1,75 раза меньше, чем для подключения к однофазной сети 220 В
Внимание, при выборе сечения провода для подключения электродвигателя по мощности следует учесть, что на шильдике электродвигателя указывается максимальная механическая мощность, которую двигатель может создать на валу, а не потребляемая электрическая мощность
Например, нужно подключить электродвигатель потребляющий мощность от сети 2,0 кВт. Суммарный ток потребления электродвигателем такой мощности по трем фазам составляет 5,2 А. По таблице получается, что нужен провод сечением 1,0 мм2, с учетом вышеизложенного 1,0 / 1,75 = 0,5 мм2. Следовательно, для подключения электродвигателя мощностью 2,0 кВт к трехфазной сети 380 В понадобится медный трехжильный кабель с сечением каждой жилы 0,5 мм2.
Гораздо проще выбрать сечение провода для подключения трехфазного двигателя, исходя из величины тока его потребления, который всегда указывается на шильдике. Например, ток потребления двигателя мощностью 0,25 кВт по каждой фазе при напряжении питания 220 В (обмотки двигателя подключены по схеме «треугольник») составляет 1,2 А, а при напряжении 380 В (обмотки двигателя подключены по схеме «звезда») всего 0,7 А.
Взяв силу тока, указанную на шильдике, по таблице для выбора сечения провода для квартирной электропроводки выбираем провод сечением 0,35 мм2 при подключении обмоток электродвигателя по схеме «треугольник» или 0,15 мм2 при подключении по схеме «звезда».
Как делается расчёт потребляемой мощности
Рассчитать приблизительное сечение кабеля можно и самостоятельно — необязательно прибегать к помощи квалифицированного специалиста. Полученные в результате расчётов данные можно использовать для покупки провода, однако, сами электромонтажные работы следует доверять только опытному человеку.
Последовательность действий при расчёте сечения такова:
- Составляется подробный список всех находящихся в помещении электрических приборов.
- Устанавливаются паспортные данные потребляемой мощности всех найденных устройств, после чего определяется непрерывность работы того или иного оборудования.
- Выявив значение потребляемой мощности от устройств, работающих постоянно, следует суммировать это значение, добавив к нему коэффициент, равный значению периодически включающийся электроприборов (то есть, если прибор будет работать всего 30% времени, то следует прибавить треть от его мощности).
- Далее ищем полученные значения в специальной таблице расчёта сечения провода. Для большей гарантии рекомендуется к полученному значению потребляемой мощности добавить 10-15%.
Для определения необходимых вычислений по подбору сечения кабелей электропроводки согласно их мощности внутри сети важно использовать данные о количестве электрической энергии, потребляемой устройствами и приборами тока. На этом этапе необходимо учесть очень важный момент – данные электропотребляемых приборов дают не точное, а приближенное, усредненное значение
Поэтому к такой отметке необходимо добавлять около 5% от параметров, указанных компанией-производителем оборудования
На этом этапе необходимо учесть очень важный момент – данные электропотребляемых приборов дают не точное, а приближенное, усредненное значение. Поэтому к такой отметке необходимо добавлять около 5% от параметров, указанных компанией-производителем оборудования.
Большинство далеко не самых компетентных и квалифицированных электриков уверены в одной простой истине – для того, чтобы правильно провести электрические провода для источников освещения (к примеру, для светильников), необходимо брать провода с сечением, равным 0,5 мм², для люстр – 1,5 мм², а для розеток – 2,5 мм².
Об этом думают и так считают только некомпетентные электрики. Но что, если, например, в одном помещении одновременно работают микроволновка, чайник, холодильник и освещение, для которых нужны провода с разным сечением? Это может привести, к самым разным ситуациям: короткому замыканию, быстрой порче проводки и изоляционного слоя, а также к возгоранию (это редкий случай, но все же возможный).
Точно такая же не самая приятная ситуация может произойти, если человек будет подключать к одной и той же розетке мультиварку, кофеварку и, допустим, стиральную машину.
Выбор сечения медного провода электропроводки по силе тока
Величина электрического тока обозначается буквой «А» и измеряется в Амперах. При выборе действует простое правило, чем сечение провода больше, тем лучше, по этому округляют результат в большую сторону.
Таблица для выбора сечения и диаметра медного провода в зависимости от силы тока | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Максимальный ток, А | 1,0 | 2,0 | 3,0 | 4,0 | 5,0 | 6,0 | 10,0 | 16,0 | 20,0 | 25,0 | 32,0 | 40,0 | 50,0 | 63,0 |
Стандартное сечение, мм2 | 0,35 | 0,35 | 0,50 | 0,75 | 1,0 | 1,2 | 2,0 | 2,5 | 3,0 | 4,0 | 5,0 | 6,0 | 8,0 | 10,0 |
Диаметр, мм | 0,67 | 0,67 | 0,80 | 0,98 | 1,1 | 1,2 | 1,6 | 1,8 | 2,0 | 2,3 | 2,5 | 2,7 | 3,2 | 3,6 |
Приведенные мною данные в таблице основаны на личном опыте и гарантируют надежную работу электропроводки при самых неблагоприятных условиях ее прокладки и эксплуатации. При выборе сечения провода по величине тока не имеет значение, переменный это ток или постоянный. Не имеют значения также величина и частота напряжения в электропроводке, это может быть бортовая сеть автомобиля постоянного тока на 12 В или 24 В, летательного аппарата на 115 В частотой 400 Гц, электропроводка 220 В или 380 В частотой 50 Гц, высоковольтная линия электропередачи на 10000 В.
Если неизвестен ток потребления электроприбором, но известны напряжение питания и мощность, то рассчитать ток можно с помощью приведенного ниже онлайн калькулятора.
Онлайн калькулятор для определения силы тока по потребляемой мощности | |
---|---|
Потребляемая мощность, Вт: | |
Напряжение питания, В: | |
Следует отметить, что на частотах более 100 Гц в проводах при протекании электрического тока начинает проявляться скин-эффект, заключающийся в том, что с увеличением частоты ток начинает «прижиматься» к внешней поверхности провода и фактическое сечение провода уменьшается. Поэтому выбор сечения провода для высокочастотных цепей выполняется по другим законам.
Причины нагрева кабеля
Токоведущие жилы могут перегреваться по нескольким причинам, которые напрямую связаны с природой электрического тока. Электрическое поле приводит в движение электроны, которые перемещаются по выбранному проводнику. В кристаллических решетках, из которых состоят металлы, действуют сильные молекулярные связи. Представьте шарик для настольного тенниса и паутину. Вторая — более-менее прочна, первый — обладает малым весом, поэтому для того, чтобы шарик разорвал паутину, придется приложить больше усилий. Чем сильнее вы выполните замах, тем более напряженными будут ваши мышцы. Чем больше напряжение, тем выше затрачиваемая энергия. Соответственно и мышцы будут нагреваться сильнее.
Так и электроны вынуждены высвобождать больше тепла, затрачивая немало энергии на преодоление этих молекулярных связей. Такой процесс называется преобразованием электрической энергии в тепловую.
Сравнить такое явление можно с выделением тепла при трении. Можно сказать, что электроны вынуждены тереться о кристаллическую решетку металла и тем самым выделять тепло. Данное свойство металлического кабеля имеет свои преимущества и недостатки. Нагрев может быть полезен на производственных объектах и для бытовых приборов. Он является основным свойством, позволяющим работать электрическим печам, обогревателям, утюгам и чайникам. Однако в обычных электрических сетях это может привести к перегреву и разрушению изоляции, а впоследствии — и вовсе к возгоранию. Могут испортиться техника и оборудование. Происходит подобное в случае превышения заданной нормы для длительных токовых нагрузок.
Перечислим три основные причины перегрева проводника:
Наиболее распространенная — использование кабеля с некорректным сечением. Любой проводник имеет уникальную максимально допустимую пропускную способность по току. Измеряется она в Амперах. Перед подключением бытового прибора нужно определить его мощность и в соответствии с ней подобрать правильное сечение
Важно учесть запас на 30-40%.
Вторая причина — отсутствие качественного контакта в точках соединения линии. Речь идет об участках трассы, где кабель подключается к щитку, автомату или выключателю
Плохой контакт приводит к нагреву. При худших раскладах — полному перегоранию. В большинстве случаев будет достаточно осмотреть контакты и подтянуть все соединения.
Старая электропроводка строилась на алюминиевых жилах, поэтому при модернизации таких кабельных линий зачастую возникает необходимость перехода на медные проводники. В данном случае важно соблюдать технику подключения медных и алюминиевых жил. Без применения специальных клеммников появление окисления — вопрос времени.
Старая алюминиевая проводка в квартире
Использование нагрева материалов при прохождении тока на практике
Но далеко не всегда нагрев проводников электрическим током является негативным фактором. Люди научились применять этот закон и себе на пользу. И примеров такого применения масса. Мы приведем лишь некоторые из них.
Простейшая электрическая печь
- Самым первым и самым распространенным, является применение закона Джоуля-Ленца в электрических печах, нагревателях и фенах. Для этого, в качестве проводника, сознательно устанавливается материал с большим сопротивлением. При протекании через него тока выделяется большое количество тепла, которое потом соответствующим образом используется человеком.
- Еще одним способом применения этого закона, являются теплые полы в вашем доме или греющие кабели, которые применяют в строительстве и канализационных системах. Для них так же сознательно применяется проводник с высоким сопротивлением.
Лампа накаливания
- И даже лампочка «Ильича» отчасти использует этот закон. Только тут материал подбирается не только исходя из сопротивления, но и из яркости свечения в нагретом состоянии.
- Но нагревание электрическим током проводников нашло свое применение и в электроэнергетике. Все вы наверняка сталкивались с предохранителями. Суть данного защитного устройства сводится к тому, что в емкость с условно неизменными параметрами помещают проводник определенного сечения. При протекании через этот проводник тока больше допустимого, он перегорает, и тем самым обесточивает защищаемую сеть.
Принцип работы предохранителя
И это только несколько примеров на скорую руку. На самом деле их на порядок больше. Поэтому нагрев проводников при протекании по ним электрического тока это далеко не всегда «зло».
Таблица мощности кабеля.
Таблица мощности кабеля требуется чтобы правильно произвести расчет сечения кабеля, если мощность оборудования большая, а сечение кабеля маленькое, то будет происходить его нагревание, что приведет к разрушению изоляции и потере его свойств.
Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.
Для передачи и распределения электрического тока основным средством являются кабели, они обеспечивают нормальную работу всего, что связано с электрическим током и насколько качественной будет эта работа, зависит от правильного выбора сечения кабеля по мощности. Удобная таблица поможет сделать необходимый подбор:
Сечение токо- проводящих жил. мм
Медные жилы проводов и кабелей
Напряжение 220В
Напряжение 380В
Ток. А
Мощность. кВТ
Ток. А
Мощность кВТ
Сечение
Tоко- проводящих жил. мм
Алюминиевых жилы проводов и кабелей
Напряжение 220В
Напряжение 380В
Ток. А
Мощность. кВТ
Ток. А
Мощность кВТ
Но чтобы пользоваться таблицей, необходимо рассчитать общую потребляемую мощность приборов и оборудования, которые используются в доме, квартире или другом месте, куда будет проведен кабель.
Пример расчета мощности.
Допустим, выполняется в доме монтаж закрытой электропроводки кабелем ВВ. На лист бумаги необходимо переписать список используемого оборудования.
Но как теперь узнать мощность? Найти ее можно на самом оборудовании, где обычно есть бирка с записанными основными характеристиками.
Измеряется мощность в Ваттах (Вт, W) либо Киловаттах (кВт, KW). Теперь нужно записать данные, а затем их сложить.
Полученное число составляет, например, 20 000 Вт, это будет 20 кВт. Эта цифра показывает, сколько все электроприемники вместе потребляют энергии. Далее следует обдумать, какое количество приборов в течении длительного периода времени будет использоваться одновременно. Допустим получилось 80 %, в таком случае, коэффициент одновременности будет равен 0,8. Производим по мощности расчет сечения кабеля:
20 х 0,8 = 16 (кВт)
Для выбора сечения понадобится таблица мощности кабеля:
Сечение токо- проводящих жил. мм
Медные жилы проводов и кабелей
Пример расчета сечения кабеля
Задача: запитать ТЭН мощностью W=4,75 кВт медным проводом в кабель-канале.
Расчет тока: I = W/U. Напряжение нам известно: 220 вольт. Согласно формуле протекающий ток I = 4750/220 = 21,6 ампера.
Ориентируемся на медный провод, потому берем значение диаметра медной жилы из таблицы. В колонке 220В – медные жилы находим значение тока, превышающего 21,6 ампера, это строка со значением 27 ампера. Из этой же строки берем Сечение токопроводящей жилы, равное 2,5 квадрата.
Расчет необходимого сечения кабеля по марке кабеля, провода
№ | Число жил, сечение мм. Кабеля (провода) | Наружный диаметр мм. | Диаметр трубы мм. | Допустимый длительный ток (А) для проводов и кабелей при прокладке: | Допустимый длительный ток для медных шин прямоугольного сечения (А) ПУЭ | |||||||||||
ВВГ | ВВГнг | КВВГ | КВВГЭ | NYM | ПВ1 | ПВ3 | ПВХ (ПНД) | Мет.тр. Ду | в воздухе | в земле | Сечение, шины мм | Кол-во шин на фазу | ||||
1 | 1х0,75 | 2,7 | 16 | 20 | 15 | 15 | 1 | 2 | 3 | |||||||
2 | 1х1 | 2,8 | 16 | 20 | 17 | 17 | 15х3 | 210 | ||||||||
3 | 1х1,5 | 5,4 | 5,4 | 3 | 3,2 | 16 | 20 | 23 | 33 | 20х3 | 275 | |||||
4 | 1х2,5 | 5,4 | 5,7 | 3,5 | 3,6 | 16 | 20 | 30 | 44 | 25х3 | 340 | |||||
5 | 1х4 | 6 | 6 | 4 | 4 | 16 | 20 | 41 | 55 | 30х4 | 475 | |||||
6 | 1х6 | 6,5 | 6,5 | 5 | 5,5 | 16 | 20 | 50 | 70 | 40х4 | 625 | |||||
7 | 1х10 | 7,8 | 7,8 | 5,5 | 6,2 | 20 | 20 | 80 | 105 | 40х5 | 700 | |||||
8 | 1х16 | 9,9 | 9,9 | 7 | 8,2 | 20 | 20 | 100 | 135 | 50х5 | 860 | |||||
9 | 1х25 | 11,5 | 11,5 | 9 | 10,5 | 32 | 32 | 140 | 175 | 50х6 | 955 | |||||
10 | 1х35 | 12,6 | 12,6 | 10 | 11 | 32 | 32 | 170 | 210 | 60х6 | 1125 | 1740 | 2240 | |||
11 | 1х50 | 14,4 | 14,4 | 12,5 | 13,2 | 32 | 32 | 215 | 265 | 80х6 | 1480 | 2110 | 2720 | |||
12 | 1х70 | 16,4 | 16,4 | 14 | 14,8 | 40 | 40 | 270 | 320 | 100х6 | 1810 | 2470 | 3170 | |||
13 | 1х95 | 18,8 | 18,7 | 16 | 17 | 40 | 40 | 325 | 385 | 60х8 | 1320 | 2160 | 2790 | |||
14 | 1х120 | 20,4 | 20,4 | 50 | 50 | 385 | 445 | 80х8 | 1690 | 2620 | 3370 | |||||
15 | 1х150 | 21,1 | 21,1 | 50 | 50 | 440 | 505 | 100х8 | 2080 | 3060 | 3930 | |||||
16 | 1х185 | 24,7 | 24,7 | 50 | 50 | 510 | 570 | 120х8 | 2400 | 3400 | 4340 | |||||
17 | 1х240 | 27,4 | 27,4 | 63 | 65 | 605 | 60х10 | 1475 | 2560 | 3300 | ||||||
18 | 3х1,5 | 9,6 | 9,2 | 9 | 20 | 20 | 19 | 27 | 80х10 | 1900 | 3100 | 3990 | ||||
19 | 3х2,5 | 10,5 | 10,2 | 10,2 | 20 | 20 | 25 | 38 | 100х10 | 2310 | 3610 | 4650 | ||||
20 | 3х4 | 11,2 | 11,2 | 11,9 | 25 | 25 | 35 | 49 | 120х10 | 2650 | 4100 | 5200 | ||||
21 | 3х6 | 11,8 | 11,8 | 13 | 25 | 25 | 42 | 60 | Допустимый длительный ток для медных шин прямоугольного сечения (А) Schneider Electric IP30 | |||||||
22 | 3х10 | 14,6 | 14,6 | 25 | 25 | 55 | 90 | |||||||||
23 | 3х16 | 16,5 | 16,5 | 32 | 32 | 75 | 115 | |||||||||
24 | 3х25 | 20,5 | 20,5 | 32 | 32 | 95 | 150 | |||||||||
25 | 3х35 | 22,4 | 22,4 | 40 | 40 | 120 | 180 | Сечение, шины мм | Кол-во шин на фазу | |||||||
26 | 4х1 | 8 | 9,5 | 16 | 20 | 14 | 14 | 1 | 2 | 3 | ||||||
27 | 4х1,5 | 9,8 | 9,8 | 9,2 | 10,1 | 20 | 20 | 19 | 27 | 50х5 | 650 | 1150 | ||||
28 | 4х2,5 | 11,5 | 11,5 | 11,1 | 11,1 | 20 | 20 | 25 | 38 | 63х5 | 750 | 1350 | 1750 | |||
29 | 4х50 | 30 | 31,3 | 63 | 65 | 145 | 225 | 80х5 | 1000 | 1650 | 2150 | |||||
30 | 4х70 | 31,6 | 36,4 | 80 | 80 | 180 | 275 | 100х5 | 1200 | 1900 | 2550 | |||||
31 | 4х95 | 35,2 | 41,5 | 80 | 80 | 220 | 330 | 125х5 | 1350 | 2150 | 3200 | |||||
32 | 4х120 | 38,8 | 45,6 | 100 | 100 | 260 | 385 | Допустимый длительный ток для медных шин прямоугольного сечения (А) Schneider Electric IP31 | ||||||||
33 | 4х150 | 42,2 | 51,1 | 100 | 100 | 305 | 435 | |||||||||
34 | 4х185 | 46,4 | 54,7 | 100 | 100 | 350 | 500 | |||||||||
35 | 5х1 | 9,5 | 10,3 | 16 | 20 | 14 | 14 | |||||||||
36 | 5х1,5 | 10 | 10 | 10 | 10,9 | 10,3 | 20 | 20 | 19 | 27 | Сечение, шины мм | Кол-во шин на фазу | ||||
37 | 5х2,5 | 11 | 11 | 11,1 | 11,5 | 12 | 20 | 20 | 25 | 38 | 1 | 2 | 3 | |||
38 | 5х4 | 12,8 | 12,8 | 14,9 | 25 | 25 | 35 | 49 | 50х5 | 600 | 1000 | |||||
39 | 5х6 | 14,2 | 14,2 | 16,3 | 32 | 32 | 42 | 60 | 63х5 | 700 | 1150 | 1600 | ||||
40 | 5х10 | 17,5 | 17,5 | 19,6 | 40 | 40 | 55 | 90 | 80х5 | 900 | 1450 | 1900 | ||||
41 | 5х16 | 22 | 22 | 24,4 | 50 | 50 | 75 | 115 | 100х5 | 1050 | 1600 | 2200 | ||||
42 | 5х25 | 26,8 | 26,8 | 29,4 | 63 | 65 | 95 | 150 | 125х5 | 1200 | 1950 | 2800 | ||||
43 | 5х35 | 28,5 | 29,8 | 63 | 65 | 120 | 180 | |||||||||
44 | 5х50 | 32,6 | 35 | 80 | 80 | 145 | 225 | |||||||||
45 | 5х95 | 42,8 | 100 | 100 | 220 | 330 | ||||||||||
46 | 5х120 | 47,7 | 100 | 100 | 260 | 385 | ||||||||||
47 | 5х150 | 55,8 | 100 | 100 | 305 | 435 | ||||||||||
48 | 5х185 | 61,9 | 100 | 100 | 350 | 500 | ||||||||||
49 | 7х1 | 10 | 11 | 16 | 20 | 14 | 14 | |||||||||
50 | 7х1,5 | 11,3 | 11,8 | 20 | 20 | 19 | 27 | |||||||||
51 | 7х2,5 | 11,9 | 12,4 | 20 | 20 | 25 | 38 | |||||||||
52 | 10х1 | 12,9 | 13,6 | 25 | 25 | 14 | 14 | |||||||||
53 | 10х1,5 | 14,1 | 14,5 | 32 | 32 | 19 | 27 | |||||||||
54 | 10х2,5 | 15,6 | 17,1 | 32 | 32 | 25 | 38 | |||||||||
55 | 14х1 | 14,1 | 14,6 | 32 | 32 | 14 | 14 | |||||||||
56 | 14х1,5 | 15,2 | 15,7 | 32 | 32 | 19 | 27 | |||||||||
57 | 14х2,5 | 16,9 | 18,7 | 40 | 40 | 25 | 38 | |||||||||
58 | 19х1 | 15,2 | 16,9 | 40 | 40 | 14 | 14 | |||||||||
59 | 19х1,5 | 16,9 | 18,5 | 40 | 40 | 19 | 27 | |||||||||
60 | 19х2,5 | 19,2 | 20,5 | 50 | 50 | 25 | 38 | |||||||||
61 | 27х1 | 18 | 19,9 | 50 | 50 | 14 | 14 | |||||||||
62 | 27х1,5 | 19,3 | 21,5 | 50 | 50 | 19 | 27 | |||||||||
63 | 27х2,5 | 21,7 | 24,3 | 50 | 50 | 25 | 38 | |||||||||
64 | 37х1 | 19,7 | 21,9 | 50 | 50 | 14 | 14 | |||||||||
65 | 37х1,5 | 21,5 | 24,1 | 50 | 50 | 19 | 27 | |||||||||
66 | 37х2,5 | 24,7 | 28,5 | 63 | 65 | 25 | 38 |
Что такое сечение провода и как его определить
Чтобы увидеть сечение провода достаточно его перерезать поперек и посмотреть на срез с торца. Площадь среза и есть сечение провода. Чем оно больше, тем большую силу тока может передать провод.
Как видно из формулы, сечение провода легко вычислить по его диаметру. Достаточно величину диаметра жилы провода умножить саму на себя и на 0,785. Для вычисления сечения многожильного провода нужно вычислить сечение одной жилы и умножить на их количество.
Диаметр проводника можно определить с помощью штангенциркуля с точностью до 0,1 мм или микрометра с точностью до 0,01 мм. Если нет под рукой приборов, то в таком случае выручит обыкновенная линейка.
Для чего нужен расчет сечения кабеля
К электрическим сетям предъявляются следующие требования:
- безопасность;
- надежность;
- экономичность.
Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.
Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода — это залог длительной безопасной эксплуатации и рационального использования финансовых средств.
Правильному подбору проводника посвящёна отдельная глава в ПУЭ: «Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны».
Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( «Правила устройства электроустановок«). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:
- Напряжение питания (однофазное или трехфазное).
- Материал проводника.
- Ток нагрузки, измеряемый в амперах (А), или мощность — в киловаттах (кВт).
- Месторасположение кабеля.
В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину — 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.
В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно «Правилам устройства электроустановок«, при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на ступень больше, чем у ВА. В данном случае после 25 А находится 35 А. Последнюю величину и необходимо брать за расчетную. Току 35 А соответствуют сечение 4 мм² и мощность 7,7 кВт. Итак, выбор сечения медного провода по мощности завершен: 4 мм².
Чтобы узнать, какое сечение провода нужно для 10 кВт, опять воспользуемся справочником. Если рассматривать случай для открытой проводки, то надо определиться с материалом кабеля и с питающим напряжением.
Коэффициенты
Существуют определенные условия, при которых сила тока внутри проводки может повышаться или понижаться. К примеру, в открытой электрической проводке, когда провода укладываются по стенам или потолку, сила тока будет повышенной, чем в закрытой схеме. Это связано напрямую с температурой окружающей среды. Чем она больше, тем большей силы тока может данный кабель пропускать.
То есть, получается так, что если в один лоток, гофру или трубу укладываются сразу несколько проводов, то внутри проводки температура будет повышенной за счет нагрева самих кабелей. Это приводит к тому, что допустимая нагрузка тока снижается на 10-30 процентов. То же самое касается и открытой проводки внутри отапливаемых помещений. Поэтому можно сделать вывод: при проведении расчета сечения кабеля в зависимости от нагрузки тока при повышенных температурах эксплуатации можно выбирать провода меньшей площади. Это, конечно, неплохая экономия. Кстати, таблицы снижающих коэффициентов в ПУЭ тоже есть.
Есть еще один момент, который касается длины используемого электрического кабеля. Чем длиннее разводка, тем больше потери напряжения на участках. В любых расчетах используются потери, равные 5%. То есть, это максимум. Если потери будут больше данного значения, то придется увеличивать сечение кабеля. Кстати, самостоятельно рассчитать токовые потери несложно, если знать сопротивление проводки и токовую нагрузку. Хотя оптимальный вариант – использовать таблицу ПУЭ, в которых установлена зависимость момента нагрузки и потерь. В данном случае момент нагрузки – это произведение мощности потребления в киловаттах и длины самого кабеля в метрах.
Разберем пример, в котором установленный кабель длиною 30 мм в сети переменного тока напряжением 220 вольт выдерживает нагрузку 3 кВт. При этом момент нагрузки будет равен 3*30=90. Смотрим в таблицу ПУЭ, где показано, что этому моменту соответствуют потери 3%. То есть, это меньше номинала в 5%. Что допустимо. Как уже было сказано выше, если расчетные потери превысили бы пятипроцентный барьер, то пришлось бы приобретать и устанавливать кабель большего сечения.
В настоящее время алюминиевые провода в разводках используются редко. Но необходимо знать, что их сопротивление больше, чем у медных, в 1,7 раза. А, значит, и потери у них во столько же раз больше.
Что касается трехфазных сетей, то здесь момент нагрузки больше в шесть раз. Это зависит от того, что сама нагрузка распределяется по трем фазам, а это соответственно тронное увеличение момента. Плюс двоенное увеличение за счет симметричного распределения потребляемой мощности по фазам. При этом в нулевом контуре ток должен быть равен нулю. Если распределение по фазам несимметричное, а это приводит к увеличению и потерь, то придется рассчитывать сечение кабеля по нагрузкам в каждом проводе по отдельности и выбирать его по максимальному расчетному размеру.