Что такое матрица в фотоаппарате: типы, размеры, критерии выбора

Размер пикселя и разрешение матрицы цифровой камеры

Принимая решение, какую купить цифровую камеру для телескопа или цифровую камеру для микроскопа, Вы можете заметить, что в описании их технических характеристик указан такой параметр как размер пикселя. Давайте разберемся, за что отвечает данная величина, и какой цифровой камере в таком случае следует отдать предпочтение.

Прежде всего, считаем, что нужно дать определение термину «пиксель». Понятие пиксель происходит от английского словосочетания picture element, что в переводе означает «элемент изображения». Так, говоря о пикселях, мы имеем в виду точки, образующие изображение на экране монитора. И отметим, что в формировании снимка, сделанного цифровой камерой, может участвовать даже несколько миллионов подобных точек.

А теперь давайте выясним, на что влияет размер этой точки, т.е. пикселя. От физического размера пикселя зависит количество собираемого им света. Поэтому чем крупнее пиксель, тем, соответственно, больше его площадь, а, значит, и количество собранного света. Таким образом, получаем, что чем больше физический размер пикселя, тем выше светочувствительность матрицы и лучше соотношение сигнал/шум.

Также заметим, что цифровые компактные фотоаппараты, которые часто еще называют мыльницами или цифромыльницами, при одинаковом количестве пикселей имеют гораздо меньшие размеры матрицы, чем обычные цифровые камеры. По этой причине мы получаем меньшие физические размеры пикселей на матрицах цифромыльниц. Таким образом, мы видим, что размеры пикселей оказывают существенное влияние на качество получаемого изображения, количество шумов и динамический диапазон. Отметим, что в пленочной фотографии шумы также еще могут называть «вуалью».

Так от физического размера пикселей зависит:

  • Количество информации, попадающей на него
  • Динамический диапазон матрицы
  • Шумы

Нельзя ожидать, что решив купить цифровую камеру для телескопа или микроскопа с небольшим физическим размером матрицы и большим количеством пикселей, Вы получите качественный снимок.

Следует понимать, что чем меньшие размеры пикселя матрицы цифровой камеры, тем раньше проявляется дифракция, и получаемое изображение начинает мылить (собственно, отсюда и происходит название «мыльница»).

Сегодня производители цифровых камер предлагают цифровые камеры с разрешением, которое может достигать даже десятков миллионов пикселей. Чем большее количество пикселей указано в технических параметрах цифровой камеры для микроскопов и телескопов, тем большим будет разрешение матрицы цифровой камеры, а, следовательно, тем выше будет детализация полученного снимка.

Вывод:

Итак, при выборе цифровой камеры для микроскопа или телескопа рекомендуем Вам учитывать, что:

  1. Чем больше физический размер пикселя, => тем большее количество информации на него попадает, и тем больше будет динамический диапазон матрицы, и меньше будут сказываться шумы.
  2. Чем выше разрешение матрицы, => тем более четкое и детализированное изображение Вы получите и, тем большего размера фотографию будет возможно напечатать без ощутимой потери качества.

opticalmarket.com.ua

Дискретная структура матрицы

Основу составляют очень маленькие фотодиоды или фототранзисторы, которые фиксируют свет и превращают его в электрический сигнал. Один такой фотодиод формирует один пиксель выходного цифрового изображения.

Давайте рассмотрим фотографию собаки.

Дискретная структура матрицы на примере собаки

Не обращайте сейчас внимания, что она черно-белая. Абстрагируйтесь от понятия цвета, это другая тема, в данный момент так лучше будет воспринимать информацию. Матрица фиксирует электрический сигнал разной величины в зависимости от интенсивности света. И, если отнять специальные фильтры, предназначенные для получения цветного изображения, то выходная фотография получается как раз черно-белой. Кстати, камеры, снимающие исключительно в ЧБ, также существуют.

Схематически нанес на изображение сетку, иллюстрирующую дискретную, т.е. прерывную структуру матрицы. Каждый квадрат иллюстрирует минимальный элемент матрицы – пиксель, формируемый фотодиодом, на который попадает свет N-ой интенсивности и на выходе преобразуется в пиксель цифрового изображения N-ой яркости. К примеру, левый верхний угол темный – значит, на этот участок матрицы попало мало света. Шерсть, напротив, светлая – значит, туда попало больше света и электрический сигнал был иным. Естественно, изображение состоит из намного большего числа квадратиков, тут лишь схематическое изображение.

Проблемы фотоматриц

Рис. 1. Модель фотоматрицы.
Рис. 1. Модель фотоматрицы с фильтром Байера.

Фотоматрица является устройством, воспринимающим спроецированное на неё изображение. Поскольку полупроводниковые фотоприёмники примерно одинаково чувствительны
ко всем цветам видимого спектра, для восприятия цветного изображения каждый фотоприёмник накрывается светофильтром одного из первичных цветов: красного, зелёного или
синего (цветовая модель RGB). В результате каждая фото ячейка воспринимает только световой поток, пропускаемый своим фильтром, а это 1/3 информации, остальные
же 2/3 фотонов попросту теряются и становятся невидимы для фото матрицы. В условиях борьбы за каждый фотон, потеря 2/3 светового потока непозволительное расточительство.

На помощь пришла наука. В 1976 г. сотрудник Kodak Брайс Э. Байер получил патент США на своё
изобретение «чувствительная матрица для цветного изображения». Поэтому фильтр Байера часто называют матрицей Байера. Байер был пионером,
он начал заниматься этими исследованиями, когда о цифровых фото матрицах ещё никто не помышлял.

Рис. 2. Фильтр Байера.
Рис. 2. Фильтр или матрица Байера.

В матрице Байера половина фотофильтров зелёные, а другая половина поделена поровну между красными и синими. Преимущества отданы зелёному, по аналогии с
человеческим глазом. Это позволяет лучше фиксировать контраст и улучшает ночное зрение фотоматрицы. Но такой подход лишает снимок части цветности. Каждый
элементарный фотодиод фиксирует информацию о яркости только своего пикселя в частичном цветоделённом изображении. Недостающие компоненты цвета рассчитываются процессором
камеры на основании данных из соседних ячеек в результате интерпретации этих данных при помощи алгоритма под названием дебайеризация или
демозаизации. При этом происходит разделение пикселей, регистрирующих красный, зелёный и синий цвета, а затем информация преобразуется в цветной файл.

Рис. 3. Цветные артефакты.
Рис. 3. Цветные артефакты. Правый рис. – норм.

Простая билинейная интерполяция для этого не подходит, так как яркие объекты при этом приобретают цветную кайму (см. Рис. 3.). Таким образом,
в формировании конечного цветового значения пикселя участвует 9 или более фотодиодов матрицы. Производители цифровых фотоаппаратов и RAW-конвертеров используют
собственные адаптивные алгоритмы, защищённые авторским правом. Впрочем, алгоритмы и настройки большинства RAW-конвертеров базируются на исходниках
dcraw — конвертера с открытым кодом, о чём многие авторы программ-конвертеров (например, SilkyPix) честно упоминают в документации на программу.

Кроме фильтра Байера в матрицах фотоаппаратов могут применяться и другие решения (см. таблицу).

Таблица 1. Схемы цветных фильтров
СхемаНазваниеОписаниеРазмер элемента
Фильтр БайераНаиболее распространенный RGB-фильтр. 1 синий, 1 красный, 2 зелёных2×2 px
RGBEОдин из зелёных фильтров заменён на изумрудный (англ. emerald). Применялся фирмой Sony в 8-мегапиксельной матрице ICX456 и в фотоаппарате Sony CyberShot DSC-F828.2×2 px
CYYMГолубой, 2 жёлтых, пурпурный. Kodak.2×2 px
CYGMГолубой, жёлтый, зелёный, пурпурный. Применяется в некоторых камерах Kodak.2×2 px
RGBW Байераодин из зелёных фильтров заменён на белый, в остальном аналогичен стандартному фильтру Байера. Незначительно выигрывает в светочувствительности и на примерно 1 ступень выигрывает в фотографической широте.2×2 px
RGBW #1три примера RGBW-фильтров Kodak, с 50 % белого. По сравнению с остальными выигрывают в светочувствительности и фотографической широте и проигрывает в цветопередаче. Между собой отличаются необходимыми алгоритмами обработки и характером структурного шума (англ. pattern noise), создаваемого большим (по сравнению с традиционным фильтром Байера) пространственным периодом структуры фильтра. Нашел применение там, где требуется высокая светочувствительность, а цветовая информация вторична: системы технического телевидения, видеонаблюдение, автомобильные видеорегистраторы.4×4 px
RGBW #2
RGBW #32×4 px
X-TransБлагодаря большей области повторения структуры X-Trans (6×6) уменьшается муар, что позволило убрать антимуарный фильтр в фотоаппарате Fujifilm X-Pro 1 и повысило детализацию снимков.6×6 px

Впрочем, это математика, а какие технологические приёмы используют производители для создания фотоматриц?

Тип матрицы

Существуют два типа матриц:

  • CMOS (КМОП) — Complementary Metal-Oxide Semiconductor
  • CCD (ПЗС) — Charged Coupled Device

Если очень упрощать — то CCD-матрица — преобразует заряды пикселей в аналоговый сигнал, а CMOS-матрица в цифровую информацию. Считается, что CCD-матрицы более светочувствительные и имеют лучшую цветопередачу (характерный пример — Sony ExView HAD). CMOS-матрицы имеют большую интеграцию и экономичность сенсора, меньшее энергопотребление и нагрев, более широкий динамический диапазон, простоту производства и меньшую стоимость, особенно мегапиксельных вариантов.

Сейчас CCD-матрицы остались разве что в старых моделях аналоговых камер стандарта CVBS (PAL, NTSC). Для IP-камер и аналоговых камер высокого разрешения стандартов CVI, TVI, AHD — можно найти почти исключительно матрицы CMOS за очень редким исключением. 

Sony Exmor

Говоря о матрицах, нельзя не упомянуть технологию конкретного производителя — на столько она повлияла на развитие CMOS-матриц. Современные CMOS-сенсоры, в отличие от CCD, построены по слоёной схеме и похожи на этажерку. Под антимуаровым фильтром расположены микролинзы переменной формы. Еще ниже — сам фотодиод. Под чувствительной поверхностью расположен модуль, который компания Sony называет DRAM. Это пять этажей из аналогово-цифрового преобразователя, буфера, системы сжатия и цепочки ускорителей (3-20 раз) передачи информационных пакетов по шине данных в LSI – линейный системный интегратор, расположенный перед процессором Sony BIONZ.

В 2009 году вышла матрица BSI-Exmor-RS с «задней подсветкой», её «рабочий отрезок» от микролинзы до пикселя уменьшен втрое, ходу луча света ничто не препятствует, а расстояние до «соседа» отсутствует — даже микролинзы плавно переходят друг в друга. Все вспомогательные и управляющие структуры каждого пикселя убраны в нижние слои. Стало возможным увеличить диаметр датчика. Чувствительность и динамический диапазон обогнали CCD-матрицы.

Разница между стандартной КМОП и КМОП с «задней подсветкой»

Live-MOS-матрица

Другая технология, которую некоторые даже выделяют в отдельный тип матрицы — разработана компанией Panasonic. Live-MOS / NMOS матрица (Live MOS sensor) — светочувствительная матрица, построенная по CMOS-технологии, имеющая благодаря ряду технических и топологических решений возможность «живого» просмотра изображения. В матрицах Panasonic уменьшено расстояние от фотодиода до микролинзы. Упрощена передача сигналов с поверхности фотодиода. Уменьшено количество управляющих сигналов с 3 (стандартные CMOS) до 2 (как в CCD), что увеличило фоточувствительную область пикселя. Применен малошумящий усилитель фотодиода. Используется более тонкая структура слоя датчиков. Сниженное напряжение питания уменьшает шум и нагрев матрицы.

Starlight, Lightfinder, DarkFighter, ColorVu и др.

Суть всех перечисленных технологий — с помощью комбинации светочувствительного объектива и матрицы, эффективной технологии шумоподавления — добиться цветного изображения при низком уровне освещенности. Подробнее про светочувствительность мы поговорим на следующем шаге — когда будем обсуждать обработку изображения с матрицы.

Мегапиксели

Как бы реклама не заверяла, что их количество сильно влияет на качество фотографии, это не совсем так. Вообще, число фотодиодов определяет не столько качество, сколько количество занимаемого в памяти объёма светового отпечатка, который передаётся на процессор. Конечно, высокое разрешение – это хорошо, только если они расположены на матрице соответствующего размера. Иначе, элементы будут перегревать друг друга, из-за чего на фотографиях может образоваться шум.

Благодаря тому, что огромное количество фотографов начинает разбираться в этом вопросе, производители начали создавать пиксели большей величины, чем раньше. А какой от этого толк?

Как мы знаем, многие камеры имеют определённый диапазон регулировки разрешения конечной фотографии. Так вот, подавляющая часть зеркалок имеют показатель от 12 до 24 Мп, а профессиональные – 10-36 Мп, причём площади сенсоров отличаются в 2 и более раз.

В чём же итог? Всё просто: под каждый случай будет хороша определённая матрица, однако, сравнение конечных результатов покажет превосходство полнокадрового датчика. Причиной тому универсальность последнего.

Если у вас есть зеркальная фотокамера и вы хотите научиться ею пользоваться, чтобы получать красивые фотографии, предлагаю вашему вниманию «Цифровая зеркалка для новичка 2.0» или «Моя первая ЗЕРКАЛКА». Данный видео курс, просто находка для новичка. Ознакомившись с его содержимым, вы получите отличные знания о зеркалки. Помните, саморазвитие — это большой шаг в будущее своего успеха.

Цифровая зеркалка для новичка 2.0 — у вас NIKON? Этот курс для вас.

Моя первая ЗЕРКАЛКА — у вас CANON? Этот курс для вас.

Надеюсь, у меня получилось рассказать о матрицах в фотоаппаратах, какая лучше и почему стоит выбирать больший сенсор. Если статья была интересна, а также полезна для вас – расскажите о ней друзьям, подпишитесь на обновления блога, впереди нас ждёт масса полезных фотостатей.

Всех вам благ, Тимур Мустаев.

В чем главное отличие всех камер?

Фотокамеры отличаются множеством различных технических параметров: зеркалки и беззеркалки, полнокадровые и кропнутые, любительские и профессиональные. Но ничто так не влияет на картинку, как размер матрицы фотокамеры. Это если не считать объективов, которые в создании фотографии играют более важную роль, чем камера, и обычно составляют более 50% стоимости всей фототехники фотографа.

Но мы сейчас не про объектив, а про матрицу камеры – самую важную и дорогостоящую деталь фотоаппарата. 

Матрица фотокамеры.

Матрицы бывают разные:

  • Средний формат – это матрицы размером от 45×60 сантиметров до 60×90 мм, которые встречаются только в дорогих профессиональных фотокамерах, поэтому их выбирают только те фотографы, которые знают, для чего им это нужно.
  • Полный кадр (фулфрейм, Full Frame, FF, ФФ) – матрица размером 36×24 мм, которая соответствует размерам пленочного кадра и является эталоном, к которому обращаются при сравнении различных камер.
  • Кроп (APS-C) – это уменьшенные матрицы с кроп-фактором 1,5 у Nikon (размер матрицы 23.5×15.6) и 1,6 у Canon (размер матрицы 22.3×14.9 мм).
  • Micro 4/3 – это вдвое уменьшенная матрица по сравнению с полным кадром. Размер ее составляет 17.3×13.0 мм.
  • Мини-матрицы в мыльницах – это миниатюрные матрицы размером от 6,16×4,62 до 12,8×9,6 мм, которые ставят в бюджетные компактные фотоаппараты с несъемными объективами.

Поскольку среднеформатные камеры очень дорогие, а бюджетные компактные камеры ограничены по функциональности из-за несъемной оптики – это крайности, которые мы не рекомендуем рассматривать в качестве альтернативы при выборе камеры. Поэтому и остается сделать осознанный выбор между полнокадровой и кропнутой камерой с кроп-фактором от 1,5 до 2.

Методы получения цветного изображения

Сам по себе пиксель фотоматрицы является «чёрно-белым». Для того, чтобы матрица давала цветное изображение, применяются специальные технические приёмы.

Трёхматричные системы

Основная статья: 3CCD


Пример работы дихроической призмы

Поступающий в камеру свет, попадая на пару дихроидных призм, делится на три основных цвета: красный, зелёный и синий. Каждый из этих пучков направляется на отдельную матрицу (чаще всего используются CCD матрицы, поэтому в наименовании соответствующей аппаратуры употребляется обозначение 3CCD).

Трёхматричные системы применяются в видеокамерах среднего и высокого класса.

Достоинства трёх матриц по сравнению с одноматричными

  • лучше передача цветовых переходов, полное отсутствие цветного муара;
  • выше разрешение: отсутствует необходимый для устранения муара размывающий (low-pass) фильтр;
  • выше светочувствительность и меньший уровень шумов;
  • возможность введения цветокоррекции постановкой дополнительных фильтров перед отдельными матрицами, а не перед съёмочным объективом, позволяет добиться существенно лучшей цветопередачи при нестандартных источниках света.

Недостатки трёх матриц по сравнению с одноматричными

  • принципиально бо́льшие габаритные размеры;
  • трёхматричная система не может использоваться с объективами с малым рабочим отрезком;
  • в трёхматричной схеме есть проблема сведе́ния цветов, так как такие системы требуют точной юстировки, причём, чем большего размера матрицы применяются и чем больше их физическое разрешение, тем сложнее добиться необходимого класса точности.

Матрицы с мозаичными фильтрами

Основная статья: Массив цветных фильтров

Во всех таких матрицах пиксели расположены в одной плоскости, и каждый пиксель накрыт светофильтром некоего цвета. Недостающая цветовая информация восстанавливается путём интерполяции (подробнее…

).

Существует несколько способов расположения светофильтров. Эти способы различаются чувствительностью и цветопередачей, при этом чем выше светочувствительность, тем хуже цветопередача:

  • RGGB — фильтр Байера, исторически самый ранний;
  • RGBW имеют более высокую чувствительность и фотографическую широту (типично выигрыш чувствительности в 1,5—2 раза и 1 ступень по фотографической широте), частный случай RGBW-матрицы — CFAK-матрица компании Kodak;
  • RGEB (красный — зелёный — изумрудный — синий);
  • CGMY (голубой — зелёный — лиловый — жёлтый).

Матрицы с полноцветными пикселами

Существуют две технологии, позволяющие получать с каждого пикселя все три цветовые координаты. Первая применяется в серийно выпускаемых камерах фирмы Sigma, вторая — на середину 2008 года существует только в виде прототипа.

Многослойные матрицы (Foveon X3)

Основная статья: Foveon X3

Фотодетекторы матрицы X3 компании Foveon расположены в три слоя — синий, зелёный, красный. Название сенсора «Х3» означает его «трёхслойность» и «трёхмерность».

Матрицы X3 применяются в цифровых фотоаппаратах Sigma.

Полноцветная RGB-матрица Nikon

В полноцветных матрицах Nikon (патент Nikon от 9 августа 2007) лучи RGB предметных точек в каждом пикселе, содержащем одну микролинзу и три фотодиода, проходят через открытую микролинзу и падают на первое дихроичное зеркало. При этом синяя составляющая пропускается первым дихроичным зеркалом на детектор синего, а зелёная и красная составляющие отражаются на второе зеркало. Второе дихроичное зеркало отражает зелёную составляющую на детектор зелёного, и пропускает красную и инфракрасную составляющие. Третье дихроичное зеркало отражает красную составляющую на детектор и поглощает инфракрасную составляющую.

Несмотря на то, что прототип матрицы уже создан (2008 год), этот патент вряд ли найдёт своё применение в ближайшее время из-за существенных сложностей в технологии.

По сравнению со всеми прочими системами, кроме трёхматричных, данная технология имеет потенциальное преимущество в эффективности использования светового потока по сравнению с технологиями RGBW или фильтром Байера. (Точный выигрыш зависит от характеристик пропускания фильтров).

По сравнению с Foveon X3, данная технология выигрывает в качестве цветопередачи.

По сравнению с 3CCD системами, данный тип матрицы выигрывает в возможности использования в зеркальных аппаратах и в отсутствии необходимости точной юстировки оптической системы.

Рекомендации по выбору фотокамеры

Если вы выбираете из нескольких устройств фотоаппарат по количеству мегапикселов, то окончательный вывод разумно делать после того, как выясните, матрицы какого размера в них установлены. Выбор стоит сделать в пользу той фотокамеры, в которой установлена матрица самого большого размера.

Если вы хотите снимать на камеру с большой матрицей, придётся мириться с её большими размерами и весом. Проанализировав рынок фотоаппаратов, становится понятно, что не существует пока небольших и дешёвых полнокадровых камер. А массовая мобильная фототехника сильно ограничена небольшим размером матрицы.

Если вы не предполагаете заниматься фотографией профессионально, то и не стоит тратиться на дорогой фотоаппарат с большим сенсором. Обычные цифровые дешёвые фотоаппараты (современные мыльницы) справятся с этой задачей ненамного хуже навороченных зеркалок и порадуют вас приличными снимками.

Не стоит забывать, что камеры в современных смартфонах также имеют неплохие параметры, которых вполне достаточно для оперативного создания хорошего снимка.

В заключение заметим, что на получение качественного снимка влияет много факторов. Самый важный из них – профессионализм фотографа. И расхожее мнение о том, что крутая камера – залог прекрасных снимков, так же далеко от истины, как и то, что дорогая кисть у художника – гарантия создания шедевров. Фотоаппаратура – всего лишь инструмент. Фотографирует человек, а не камера. Тем не менее в арсеналах у знаменитых фотохудожников трудно найти дешёвую мыльницу. Выбор за вами.

Другие полезные советы по выбору зеркальных фотоаппаратов

Размер матрицы и кроп-фактор

Продолжаем тему матриц в зеркальных фотоаппаратах. На этот раз речь пойдёт об их геометрических размерах. Для удобства создания фототехники все размеры матриц стандартизированы. Эталоном, наибольшей по размерам матрицей, называется тип Full-frame (фулл-фрейм), 36×24 мм.

Размерные величины определяют два следствия. Поняв идею работы матрицы, легко понять и то, что эффективность её работы прямо пропорциональна размеру. Чем больше размер матрицы, тем качественнее получаемое изображение, и данном случае большой размер матрицы играет на руку покупателю.

Но здесь действуют неумолимые законы физики. Большой размер матрицы вынуждает пользователя приобретать увесистый объектив.

Рис. 2. Схема кроп-факторов для различных фотоаппаратов

А теперь о кроп-факторе (обозначается как «Cf»). Для начала следует осознать, что это безразмерная величина. Определяется отношением площади эталонной матрицы (фулл-фрейм) к площади матрицы в вашем будущем фотоаппарате. Если говорить проще, кроп-фактор показывает, во сколько раз матрица фотоаппарата меньше эталонной.

Если вы намерены производить съёмку в студии (что актуально для модельных агентств), хорошим вариантом в данном случае является именно фулл-фрейм. Но достойное качество можно получить и с меньшей по размерам матрицей. Для съёмки в динамичных условиях лучший выбор – матрица с кроп-фактором 4/3.

Для зеркального фотоаппарата с данным кроп-фактором предназначен свой индивидуальный модельный ряд объективов. Удостоверяйтесь перед покупкой, совместим ли объектив с кроп-фактором.

О действительной пользе мегапикселей, разрешение матрицы

Многие совершают ошибку, при выборе камеры обращая внимание на такой фактор, как количество мегапикселей. Для малоопытных пользователей ПК этот параметр может означать лишь совместимость или несовместимость выбранных «обоев» для рабочего стола с параметрами их дисплея; тот случай, когда невежество повергает опыт

Действительно, количество пикселей является лишь размерной величиной, и определяет качество только с худшей стороны. Матрица как раз и состоит из пикселей, каждый из которых формирует цветовую точку в результате аналогово-цифрового преобразования. Чем больше их количество, тем меньше площадь каждого отдельного пикселя матрицы. Меньший по размерам пиксель улавливает меньшее количество света, значит, общий показатель качества будет гораздо ниже при увеличении количества.

Словом, для вас это значение должно иметь такую же ценность, какую имеет параметр 1600×1200 для малоопытных ПК-пользователей. К параметру следует использовать рациональный подход: размер фотографии должен соответствовать современным параметрам (эквивалентным количеству точек в ПК-дисплеях), но не более того, конечно, если вы не создаёте дизайн баннеров наружной рекламы.

Светочувствительность, ISO

Данный параметр определяет способность матрицы распознавать световой поток. В технических характеристиках, как правило, указывается диапазон ISO (минимальное – максимальное значение).

ISO является как раз тем значением, за которым не следовало бы вести напряжённую «охоту» (так же, как и за мегапикселями). Детализация элементов кадра во многом зависит от светосилы объектива.

Дополнительные возможности

Если вы определились со всеми вышеперечисленными пунктами, примите поздравления, так как самая сложная часть выбора позади. Дело за малым – определиться с дополнительным оснащением камеры, техническим и функциональным.

Камера может иметь:

  • Оптический стабилизатор изображения
  • Функцию ультразвуковой очистки матрицы от пыли (полезный инструмент для тех, кто часто меняет объективы, «обнажая» поверхность преобразователя)
  • Контакт для подключения внешней вспышки
  • Разъём для пульта (при чувствительных настройках камеры толчок в результате нажатия кнопки спуска может смазать изображение)
  • Защищённый корпус
  • ЖК дисплей

Присутствие всего перечисленного желательно для профессиональной съёмки, но поскольку это сказывается на цене, определитесь, стоит ли «игра» сгоревших «свеч».

Типы матриц

По технологии считывания и используемым полупроводникам выделяют два основных вида матрицы:

  • Прибор зарядовой связи или ПЗС (CCD);
  • Комплиментарный металл-оксид-полупроводник или КМОП-матрица (CMOS).

Матрица фотоаппарата типа ПЗС имеет невысокую стоимость и постепенно уходит в прошлое. В камерах, оснащенных ей, информация об изображении считывается с каждой ячейки последовательно, поэтому время выдержки значительное. По этой причине делать быстро кадры не получится, а если недостаточно освещения, то придется использовать штатив.

КМОП-матрица фотоаппарата появилась на рынке относительно недавно (2008 год), хотя разработка технологии началась еще в 1993 году. Принцип работы основывается на выборке отдельных пикселей и схож с работой карты памяти. Зачастую полноразмерные матрицы изготовляют именно по этой технологии, так как нет потери низа, верха и боковых границ. Она позволяет делать кадры с малой выдержкой. Сам полупроводник светочувствительный и работает тихо.

Live-MOS-матрица фотоаппарата является улучшенной версией КМОП. Имеет небольшое количество соединений, светочувствительная, потребляет немного энергии.

Используется, производиться исключительно компанией «Panasonac». За счет того, что размеры матрицы небольшие, фотоаппараты с ней имеют компактные размеры.

Live-MOS имеет недостатки. Из-за того, что на каждый пиксель выделена отдельная электрическая цепь, на изображении часто появляется шум и возникает перегрев.

Super CCD-матрица камеры имеет пиксели с восьми углами, часть из которых зеленого цвета, маленького и большого размера. Остальные пиксели синего и красного цвета совпадают по размеру с малыми пикселями зеленого цвета. За счет разного размера увеличивается фотографическая широта, а коэффициент заполнения пикселями равняется 100%. Из-за сложного принципа считывания сигнала, камеры с этой матрицей потребляют большое количество энергии и дорого обходятся для производителя.

QuantumFilm. Эти типы матриц фотоаппаратов изготовляются на основе кремния и квантовых точек. Именно последние позволяют захватить световые лучи практически на 100%. Отсюда высокая резкость изображения даже при низкой освещенности. Сенсор за счёт наличия квантовых точек имеет компактные размеры.

Стоит отметить, что человеческий глаз не заметит принципиальных различий между разными матрицами. Главное отличие в них — процесс производства.

Тип матрицы фотоаппарата классифицируют в зависимости от светофильтра:

  • RGB, встречается чаще всего;
  • RGBW, позволяет получить хорошие кадры даже при низкой освещенности;
  • С фильтрами Байера RGBE, имеет много зеленых пикселей, благодаря чему цветность кадра максимально приближена к естественным оттенкам.

RGB расшифровывается как красный — зеленый — синий. На базе смешивания этих трех базовых цветов формируются все остальные.

Приставка «W» означает «белый», то есть светофильтр имеет дополнительный белый фотодиод. На что это влияет? Матрицы, где белых фотодиодов до 50%, сокращают потерю света примерно на 1/3. У камер с RGBW лучшее соотношение шум-сигнал. Недостаток — утрата мелких цветных деталей при нормальном освещении.

[править] Происхождение термина

Использование термина «Фотоматрица» связано с частым использованим его в русских СМИ при описании тем, связанных с Фотодатчиками. Термин матрица появился в XI веке в полиграфии и связан с изготовлением литер. В металлургии применяются матрицы, когда готовят чугунные образцы-матрицы для исследований структуры чугуна в микроскопе. Поэтому данный термин можно использовать и в цифрографии, но как главный элемент при сборке фотосенсора. В собранном виде, после окончательных паек в спецкорпусе, создания электрических выводов для дальнейшего использования в фотоаппратуре, получаем товарный продукт — Фотодатчик (Фотосенсор) для производства.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий