Как сделать тепловой насос своими руками из старого холодильника: чертежи, инструкция и советы по сборке

Тепловой насос «воздух-вода» для дома

Особенностью систем «воздух-вода» является сильная зависимость температур теплоносителя в системе отопления от температуры источника — наружного воздуха. Эффективность подобного оборудования постоянно изменяется как в сезонном отношении, так и в погодных условиях. В этом проявляется существенное отличие аэротермальных систем от геотермальных комплексов, чья работа стабильна в течение всего срока службы и не зависит от внешних условий.

Кроме того, тепловые насосы типа «воздух-вода» способны как обогревать, так и охлаждать воздух в помещениях, что делает их востребованными в регионах с относительно холодными зимами и жарким летом. В целом, использование подобных систем наиболее эффективно в относительно теплых районах, а для северных областей требуется дополнительные средства обогрева (обычно используются электронагреватели).

Как работают тепловые насосы воздух-вода?

В основе работы теплового насоса типа «воздух-вода» положен принцип Карно. Говоря более понятным языком, используется конструкция фреонового холодильника. Хладагент (фреон) циркулирует в замкнутой системе, проходя последовательно стадии:

  • испарения, сопровождающегося сильным охлаждением
  • подогрева от тепла поступающего наружного воздуха
  • сильного сжатия, при котором его температура становится высокой
  • конденсации с переходом в жидкое состояние
  • прохода через дроссель с резким падением давления и испарением

Для нормальной циркуляции хладагента необходимо иметь два отделения — испаритель и конденсатор. В первом температура низкая (отрицательная), для нагрева используется тепловая энергия из воздуха окружающей среды. Второе отделение служит для конденсирования хладагента и передачи тепловой энергии в теплоноситель системы отопления.

Роль поступающего извне воздуха — передача тепла в испаритель, где температура очень низкая и требует повышения для предстоящего сжатия. Тепловая энергия воздуха имеется даже при отрицательных температурах и сохраняется до тех пор, пока не произойдет понижение температуры до абсолютного нуля. Низкопотенциальные источники тепловой энергии позволяют получать высокую эффективность системы, но при сильном понижении наружной температуры до -20°C или – 25°C система останавливается и требует подключения дополнительного источника обогрева.

Достоинства и недостатки

Достоинствами тепловых насосов «воздух-вода» являются:

  • простота установки, отсутствие земляных работ
  • источник тепловой энергии — воздух — имеется везде, он доступен и совершенно бесплатен. Для работы системы требуется только электропитание для циркуляционного оборудования, компрессора и вентилятора
  • тепловой насос можно конструктивно объединить с вентиляцией, что позволить существенно повысить эффективность работы обеих систем
  • отопительная система безвредна для окружающей среды и не опасна в эксплуатационном отношении
  • работа системы практически бесшумна, может управляться при помощи систем автоматики

Недостатками теплового насоса «воздух-вода» являются:

  • ограниченность применения. Бытовые модели ТН требуют подключения дополнительных систем отопления уже при -7°C, промышленные образцы способны держать температуру до -25°C, что для большинства регионов России слишком мало
  • зависимость эффективности системы от температуры наружного воздуха делает работу системы нестабильной и требует постоянной перенастройки режимов функционирования
  • для питания вентиляторов, компрессоров и прочих устройств требуется подключение к стабильному источнику электроэнергии

Планируя использование подобной системы отопления и ГВС, необходимо учитывать эти особенности.

Расчет мощности установки

Порядок расчета мощности установки сводится к определению площади дома, подлежащей обогреву, подсчету необходимого количества тепловой энергии и подбору оборудования, соответствующего полученным значениям. Излагать подробную методику расчета нет смысла, поскольку она чрезвычайно сложна, требует знания многих параметров, коэффициентов и прочих значений. Кроме того, нужен опыт выполнения подобных расчетов, иначе результат окажется совершенно ошибочным.

Для решения проблемы рекомендуется использовать онлайн-калькулятор, найденный в сети. Пользоваться им легко, надо лишь подставить в окошечки свои данные и получить ответ. Если появились сомнения, расчет можно продублировать на другом ресурсе, чтобы получить сбалансированные данные.

Схема теплового насоса

Работоспособность большинства тепловых насосов базируется на тепле грунта, в котором на протяжении года температура практически не колеблется (в пределах 7-10 градусов). Тепло перемещается между тремя контурами:

  1. Контур отопления
  2. Тепловой насос
  3. Рассольный (он же земляной) контур

Классический принцип работы тепловых насосов в отопительной системе состоит из следующих элементов:

  1. Теплообменник, отдающий внутреннему контуру тепло, забираемое у земли
  2. Сжимающее устройство
  3. Второе теплообменное устройство, передающее отопительной системе энергию, получаемую во внутреннем контуре
  4. Механизм, понижающий давление в системе (дросселе)
  5. Рассольный контур
  6. Земляной зонд
  7. Отопительный контур

Труба, которая выполняет роль первичного контура, помещается в колодец или закапывается непосредственно в землю. По ней перемещается незамерзающий жидкий теплоноситель, температура которого повышается до аналогичной характеристики земли (около +8 градусов) и поступает во второй контур.

Вторичный контур забирает тепло у жидкости. Циркулирующий внутри фреон начинает закипать и преобразовываться в газ, который направляется в компрессор. Поршень сжимает его до 24-28 атм, благодаря чему происходит увеличение температуры до +70-80 градусов.

На данном рабочем этапе происходит концентрирование энергии в один небольшой сгусток. Благодаря этому увеличивается температура.

Разогретый газ поступает в третий контур, который представлен системами горячего водоснабжения или даже отопления дома. При передаче тепла возможны потери до 10-15 градусов, но они оказываются не существенны.

Когда фреон остывает, происходит уменьшение давления, и он вновь превращается в жидкое состояние. При температуре 2-3 градуса он поступает обратно во второй контур. Цикл повторяется снова и снова.

Преимущества тепловых насосов

К преимуществам систем обогрева с тепловыми насосами относят такие:

  1. Экономическая эффективность. При затратах 1 кВт электрической энергии можно получить 3-4 кВт тепловой. Это усредненные показатели, т.к. коэффициент преобразования тепла зависит от типа оборудования и особенностей конструкции.
  2. Экологическая безопасность. При работе тепловой установки в окружающую среду не попадают продукты сгорания или другие потенциально опасные вещества. Оборудование озонобезопасно. Его применение позволяет получить тепло без малейшего вреда для экологии.
  3. Универсальность применения. При установке систем отопления, работающих от традиционных источников энергии, владелец дома попадает в зависимость от монополистов. Солнечные батареи и ветрогенераторы не всегда рентабельны. Зато тепловые насосы можно устанавливать где угодно. Главное – правильно выбрать тип системы.
  4. Многофункциональность. В холодное время года установки отапливают дом, а в летнюю жару способны работать в режиме кондиционеров. Оборудование применяют в системах ГВС, подключают к контурам теплых полов.
  5. Безопасность эксплуатации. Теплонасосам не требуется топливо, при их работе не выделяются токсичные вещества, а предельная температура узлов оборудования не превышает 90 градусов. Эти отопительные системы не опаснее холодильников.

Идеальных приборов не существует. Тепловые насосы надежны, долговечны и безопасны, но их стоимость напрямую зависит от мощности.

Качественное оборудование для полноценного обогрева и горячего водоснабжения дома 80 м.кв. обойдется примерно в 8000-10000 евро. Самоделки маломощны, их можно использовать для отопления отдельных комнат или подсобных помещений.

Эффективность установки зависит от теплопотерь дома. Оборудование имеет смысл устанавливать только в тех зданиях, где обеспечен высокий уровень изоляции, а показатели теплопотерь не выше 100 Вт/м.кв.

Оборудование надежно и редко ломается

Если оно самодельное, то важно подобрать качественный компрессор, лучше всего – от холодильника или кондиционера проверенной марки

Что такое геотермальное отопление?

Наверняка многие из вас знают, что глубоко под землей, температура практически не падает ниже 10 градусов с плюсом. Конечно же, речь идет не о каких-то 2-3 метрах, а о 20 и более. Так вот, геотермальное отопление, как раз и рассчитано на то, что получая тепло от земли, тепловой насос «увеличивает» её в несколько.

Но так ли очевидна экономия при использовании теплового насоса, и, тем более, бесплатна? Как было сказано выше, тепловой насос работает от электроэнергии. Поэтому становится понятным, что какую-то её часть он все-таки будет потреблять, а, следовательно, и финансовые расходы за геотермальное отопление тоже будут.

И если произвести все необходимые расчеты, то становится понятным, что экономия от установки теплового насоса в отопительном системе будет только в том случае, если в доме смонтированы низкотемпературные приборы отопления. В первую очередь, это теплые полы и напольные конвекторы, работа которых рассчитана на +30 градусов.

В целом, чтобы отопить 100 квадратных метров дома, нужно потратить около 10 кВт тепловой энергии, всё зависит от того, насколько хорошо утеплено строения. Подсчитываем, что потребляя 1 кВт электроэнергии, тепловой насос с СОР в 5 кВт способен выдать пять киловатт тепловой мощности. Ну а на то, чтобы отопить целый дом в 100 м², геотермальный насос будет потреблять порядка 2 кВт электроэнергии в час.

Не нужно, наверное, быть большим математиком, чтобы правильно подсчитать затраты на электричество, которое будет потреблять тепловой насос. За геотермальное отопление в месяц придется платить свыше 3000 рублей за электроэнергию. Собственно это и ставит под большой вопрос экономичность подобного рода отопления на сегодняшний день.

Из старого электрического бойлера

Первым этапом изготовления солнечного бойлера своими руками необходимо снять корпус и слой утеплителя, это можно сделать при помощи болгарки, если на баке есть ржавчина, произведите его зачистку железной щеткой, если в баке была течь, устраните. Обезжирьте бак и покрасьте его черной матовой краской.

Необходимо построить корпус и установить его в предполагаемом месте установки. Из деревянных брусков сколотите корпус, оббейте его фанерой, с фронтальной стороны утеплите стекловатой или другим теплоизоляционным материалом и обшейте ОСБ плитой, покрасьте черной краской, чтобы лучше держал температуру нагретой жидкости. Для устойчивости конструкции изготовьте подставку. При установке учтите тот факт, что горячая вода поднимается вверх. Несложно изготовить самостоятельно и накопительный водонагреватель.

Кроме фото, Вы можете посмотреть видео о солнечном водонагревателе, который автор сделал своими руками:

2 Как сделать и установить тепловой насос своими руками?

Тепловой насос своими руками изготовить вполне реально, однако для этого необходимо найти хороший компрессор.

В качестве конденсатора можно использовать бак из нержавейки, ориентировочно на 100 литров. А для контура, по которому будет циркулировать теплообменник, отлично подойдут тонкие медные сантехнические трубки.

Тепловой насос своими руками – этапы изготовления:

  1. С помощью уголка, либо L-образных кронштейнов крепим компрессор к стене в том месте, где будет размещаться тепловой насос.
  2. Далее, из медных трубок делаем змеевик – обматываем их вокруг цилиндра подходящей формы. Следите за тем, чтобы шаг намотки по всем змеевику был идентичен.
  3. Бак разрезается на две части, внутрь вставляется змеевик, после чего бак сваривается обратно. При этом в нём создается несколько резьбовых входных отверстий – сверху и снизу, через которые наружу выводятся крайние трубки змеевика.
  4. В качестве испарителя используем обычную пластиковую бочку, в которую заводятся трубы внутреннего контура (либо любую другую емкость, объем которой идентичен конденсаторному баку).
  5. Для транспортировки прогретой воды используются обычные ПВХ трубы.

Для заправки системы фреоном рекомендуется обратиться к специалисту.

Чтобы сделать тепловой насос Френетта своими руками нам необходимо обзавестись такими материалами:

  • Стальной цилиндр (диаметр выбирайте исходя из мощности насоса, которая необходима вам для отопления: чем больше рабочая поверхность – тем более эффективным будет устройство);
  • Стальные диски, с диаметром на 5-10% меньше, чем диаметр цилиндра;
  • Электродвигатель (лучше всего изначально подбирать привод с удлиненным валом, так как на него будут устанавливаться диски);
  • Теплообменник – любое техническое масло.

От количества оборотов, которое может выдать двигатель, будет зависеть температура, до которой насос Френетта сможет прогреть воду для отопления дома, либо бассейна. Чтобы вода в радиаторах прогрелась до 100 градусов необходимо, чтобы привод обеспечивал 7500—8000 оборотов/мин.

Вал силового агрегата на подшипниках размещаем внутри стального цилиндра. Место, где вал входит в цилиндр должно быть надежно уплотнено, поскольку наличие даже малейших вибраций быстро выводит механизм из строя.

На вал двигателя монтируются рабочие диски. Необходимое расстояние между ними можно задать, накручивая после каждого диска гайки. Количество дисков определяется в зависимости от длины цилиндра – они должны равномерно заполнять весь его объем.

В верхней и нижней части цилиндра просверливаем два отверстия: к верхнему будет подведены отопительные трубы, в которые будет подаваться масло, а к нижнему отверстию подсоединяется обратная труба для возврата использованного масла с радиаторов.

Вся конструкция закрепляется на металлической раме. После того как агрегат собран, цилиндр заполняется маслом, к нему подключаются патрубки отопительной магистрали и выполняется герметизация соединений.

Тепловой насос, созданный на производстве

Тепловой насос Френетта обладает очень высоким КПД, что позволяет его эффективно использовать в любых отопительных системах. Он может использоваться для обогрева любых хозяйственных помещений, гаражей, и жилых зданий. Кроме этого, за счет компактных размеров такой самодельный насос отлично подходит для прогрева бассейна, либо «теплого пола».

Но помните, что при прогреве бассейна и других крупных емкостей с водой необходим насос достаточной мощности, иначе вы просто будете использовать его не по назначению, и желаемых результатов не получите.

2.1 Монтаж тепловых агрегатов

Особенности монтажа тепловых насосов зависят, в первую очередь, от способа размещения внешнего контура.

  1. Геотермальные тепловые насосы. Для вертикального способа монтажа создаются скважины глубиной от 50 до 100 метров, в которые опускается специальный зонд. Для горизонтальной укладки создается траншея на ту же длину либо котлован, в котором трубы укладываются параллельно друг другу. Трубы закладываются в грунт на глубину полутора метров.
  2. Насосы вода-вода: внешний контур укладывается на дне водоема, и выводятся к тепловому насосу.
  3. Воздух-вода: блок с трубами внешнего контура устанавливается на крыше или на стене здания (по внешнему виду его трудно отличить от наружной коробки кондиционера), и подводится к тепловому насосу внутри помещения.

Принцип работы теплонасоса

Особенность теплонасосов заключается в том, что они работают от природных источников энергии. Чтобы выделить тепловую энергию, насосу не нужно дизельного топлива, электроэнергии или твердого топлива.В качестве источника энергии используется вода, атмосфера и грунт. Насосы не выделяют тепла, а просто переносят его в строение. При этом используется небольшое количество электроэнергии.

Для того чтобы обеспечить дом теплом, необходимо иметь всего лишь тепловой насос и источник тепла. Принцип работы системы напоминает работу обычного холодильника, только наоборот. В этом случае тепло забирается снаружи и переправляется в дом.

Важный момент: главным элементом в альтернативной системе отопления является именно теплонасос, поэтому к его сооружению нужно подойти очень внимательно.Насос состоит из следующих элементов:

  • компрессора, который является промежуточным элементом системы;
  • испарителя. В нем происходит передача низкопотенциальной энергии;
  • дроссельного клапана, по которому хладагент (фреон) возвращается в испаритель;
  • конденсатора, где происходит охлаждение фреона и отдача тепловой энергии.

Насос работает по определенному принципу. Это выглядит приблизительно так:

Принцип работы теплонасоса. (Для увеличения нажмите)

  1. Низкопотенциальное тепло, которое выделяется от внешних источников энергии, по трубам передается в испаритель – в первый элемент в конструкции насоса. Тепло передается теплоносителями, которые способны выдерживать низкие температуры и не замерзать при этом.
  2. Здесь тепло передается к хладагенту, который циркулируется по замкнутому контуру системы. В качестве холодильного агента часто используется фреон.
  3. В компрессоре на фреон действует высокое давление, что значительно повышает его температуру.
  4. На следующем этапе хладагент поступает в конденсатор, где происходит передача тепла в контур отопительной системы. В результате тепло уходит в помещение, а фреон, охлаждаясь, возвращается в жидкое состояние.
  5. Через редукционный клапан фреон попадает обратно в испаритель, где процесс повторяется.

Исходя из принципа работы насоса, электроэнергия тратится только на работу компрессора. В результате это и делает тепловой насос самым экономичным способом передачи тепла.

Возможно, Вас заинтересует статья об особенностях тепловых насосов для отопления дома. Подробную классификацию теплонасосов Вы можете изучить в этой статье.

Тепловой насос вода-вода

Более эффективным вариантом считается тепловой насос вода-вода. Он извлекает тепловую энергию из ближайшего водоема, если таковой есть на расстоянии до 100 м от дома. Другой, более распространенный способ – отбор тепла у грунтовых вод через скважину. По сути, скважин нужно 2: одна для выкачивания воды, другая – для ее сброса. Ниже представлены схемы тепловых насосов, действующих по такому принципу:

Здесь есть свои нюансы. Вода из скважины должна проходить очистку перед попаданием теплообменник, а трубы надо прокладывать ниже глубины промерзания грунта. Другое дело – контур на дне водоема, он заполняется незамерзающей жидкостью (пропиленгликолем), что служит посредником между водой и хладагентом.

Также существуют геотермальные тепловые насосы, чей принцип работы не отличается от предыдущих типов аппаратов, только тепло извлекается из грунта на глубине, где температура всегда одинакова – плюс 7 ºС. Для этого в землю закапывается горизонтальный контур из труб, занимающий большую площадь, либо в скважины глубиной 25 м опускаются геотермальные зонды. В обоих случаях в качестве теплоносителя используется антифриз.

Пошаговая инструкция переделки холодильника

Электонагревательные элементы у «Садко» размещены на трубке сифона внизу, сзади агрегата. Эта область защищена кожухом из металла, под которым укладывают слой изолятора, например, минеральной ваты.

Алгоритм создания газового холодильника:

Первоначально удаляют электронагреватель, под изоляционным слоем.
Помещают агрегат в удобном для работы помещении.
Демонтируют защищающий корпус.
Удаляют изоляцию.
Снимают электроэлемент с сифонной трубки

Операции выполняют с повышенной осторожностью, поскольку хладосистема заполнена аммиаком до 2.0 атм, разгерметизация системы опасна для человека.
Устанавливают газовую линию нагрева, работающей на сжиженным газе.
В области сифонной трубки монтируют модуль, выполняющий нагрев среды, при этом нагревать ее открытым огнем запрещено.
Изготавливают теплообменник, например, из куска меди, во внутреннюю полость которого вставляют горелку.
Этот модуль должен быть закреплен плотно к трубке сифона агрегата, вместо электрического.
Оборудуют защиту от перегрева, поскольку допустимый рабочий диапазон Т у «Садко» от 50 до 175 С.
Для долгосрочного использования такого холодильника потребуется контролировать не только Т нагрева среды в теплообменнике, но и осуществлять контроль пламени, давления пропана и предусмотреть розжиг. Для этих целей могут подойти узлы автоматики безопасности и розжига, например, от газовой колонки.

Создание насоса из компрессора холодильника

Обыкновенный холодильник, который стоит в каждой квартире и каждом доме, помогает длительный срок сохранять пищу непортящейся. Мало кто задумывался о принципах работы этого агрегата – достаточно того знания, что он создает холод, при котором продукты питания долгое время не теряют свои качества.

На самом деле холодильник не создает холод, а отбирает тепло у воздуха, и эта его способность может пригодиться как ни странно, и для обогрева дома. Тепловой насос своими руками из холодильника станет хорошим решением для небольших домов, где мощности стандартной установки будет достаточно для перемещения охлаждающей жидкости.

Создается тепловой насос следующим образом: холодильник полностью разбирается, и из него извлекаются самые нужные элементы. Это даже не трубки с идущим по ним фреоном, а компрессор. Насос из компрессора холодильника будет перемещать смесь воды и фреона по трубам, которые проводят вдоль дома, обеспечивая тем самым его прогрев. Откуда же берется тепло для жидкости? Для этого используют внешние источники – такие, как подземные воды, или само геотермальное тепло. Чтобы оно помогало в отоплении дома, необходимы скважины, либо помещение трубок с жидкостью в среду, имеющую большую температуру, чем в среднем на улице. Если поблизости имеется горячий источник, это может стать простым и дешевым решением вопроса.

Чтобы в доме сохранялось тепло, необходимо проследить за его теплоизоляцией. Важную роль в этом играет проведенный ремонт и материал, из которого изготовлены деревянные полы и стены. Для больших помещений, или в условиях сильного понижения температуры, вариант с компрессором из холодильника может быть малоэффективным.

Следует учесть также, что хотя фреон и не относится к ядовитым газам, но, тем не менее, герметичность всех труб должна быть максимальной – было бы нежелательно, чтобы из-за неплотного стыка все труды пропали даром. Фреон легко испаряется, поэтому необходимо обеспечить замкнутую и четко функционирующую систему – тогда пополнение запасов газа может потребоваться только в редких случаях.

Вторым полезным приспособлением, которое может быть изготовлено из стоящей на кухне техники, стал вакуумным насос из компрессора холодильника. Многие слышали про такую вещь, но видел далеко не каждый. Между тем те продукты, которые мы покупаем в магазине, чаще всего упакованы именно с его помощью – из под слоя упаковка был откачан воздух, создавая внутри вакуум. Мало того, что упаковка теперь плотно прилегает к продукту, так и хранится он станет намного дольше – в таких условиях практически не встречаются бактерии, наносящие вред продуктам питания. Так как сделать из компрессора холодильника насос – задача, посильная каждому, даже старый холодильник может еще долгое время послужить в качестве насоса создания вакуума. Можно получить продукты, которые будут долго храниться, и не портиться. Помимо этого, мощный насос может быть применен для уменьшения объема вещей (курток и т.д.), чтобы затем пакет с ними можно было поместить в сумку или чемодан.

Как сделать из компрессора холодильника насос? На самом деле достаточно лишь извлечь его, обрезав все идущие к нему шланги, и затем можно пользоваться насосом для получения вакуума в пакетах

Главное – обратить внимание на способ его подключения к сети, иначе придется потратить время на попытки подключить его отдельно от холодильника, из которого компрессор был вытащен

Источник

Как сделать тепловой насос своими руками

Экология познания. Усадьба: В последние десятилетия у владельцев домов появился довольно большой выбор систем отопления. Уже необязательно подключаться к централизованным сетям и использовать традиционные источники. Можно выбрать оборудование, работающее на альтернативной энергии, но его главный недостаток – дороговизна. Впрочем, если сделать тепловой насос своими руками из старого холодильника, систему можно существенно удешевить.

Сегодня мало кто сомневается в том, что тепловой насос для отопления дома – самое эффективное средство из всех существующих. Оно же — самое дорогое и сложное в исполнении. По этой причине многие домашние умельцы взялись за самостоятельное решение данной проблемы.

Но ввиду ее высокой сложности достижение положительных результатов дается весьма непросто, нужно иметь энтузиазм, терпение и вдобавок хорошо изучить теорию. Наша статья для тех, кто делает первый шаг на пути внедрения у себя дома такого альтернативного источника энергии, как тепловой насос, сделанный своими руками.

Виды самодельных обогревателей из холодильника

По типу используемого источника энергии тепловые насосы для дома делят на следующие виды:

  • геотермальные (открытые и закрытые);
  • воздушные.

Агрегаты, использующие вторичные источники тепла, устанавливают обычно на предприятиях, так как их рабочий цикл связан с выработкой энергии, требующей дополнительной утилизации.

В геотермальных насосах источником энергии выступает грунт или грунтовые воды. Устройства замкнутого типа делят на:

  1. Горизонтальные. Коллектор, собирающий тепло, имеет форму колец или зигзагов. Его располагают горизонтально в траншеях на глубине более 1,3 м. расстояние между трубами – около 1,5 м. Используют подобные тепловые насосы для обогрева помещения небольшой площади. Если грунт песчаный, то длину контура увеличивают в 2 р., так как он не способен удерживать влагу.
  2. Вертикальные. Отличается вертикальным расположением коллектора теплосборника. Глубина скважины – около 200 м. Они заполняются грунтовыми водами, отдающими впоследствии тепло. Такой вариант системы используют, если отсутствует возможность горизонтального ее размещения или существует высокая угроза повреждения ландшафта. 1 м скважины дает 50-60 Вт энергии, поэтому для насоса с мощностью 10 кВт достаточно пробурить 170 м. Чтобы получить больше тепла нужно сделать несколько небольших скважин на расстоянии 20 м друг от друга.
  3. Водные. Форма коллектора идентична горизонтальному типу теплового насоса, но располагают его на дне водоема, ниже уровня промерзания (глубина – от 2 м). Этот метод установки системы обычно обходится дешевле. Стоимость зависит от места нахождения водоема, его глубина и общего объема воды.

В насосах открытого типа вода, используемая для теплообмена, сбрасывается обратно в грунт.

Контур водяных тепловых насосов изготавливают из пластиковых труб, которые прижимают ко дну водоема из расчета 5 кг на 1 м длины. Каждый 1 п.м. контура дает около 30 кВт энергии. Если вам нужна система с мощностью 10 кВт, то протяженность контура должна быть не менее 300 м. К плюсам конструкции относят простоту монтажа, малую стоимость. Минусом является невозможность обогрева помещения при сильных морозах, так как получение энергии не происходит.

Исходя из названия, в воздушных тепловых насосах источником энергии является воздух. Эти агрегаты подходят для территории с жарким климатом, так как при минусовой температуре производительность будет сильно снижаться. Основной плюс заключается в отсутствии больших материальных затрат на бурение скважин. Систему располагают недалеко от дома.

Эффективность насоса зависит от его коэффициента преобразования, который представляет собой разницу между потребляемой и отдаваемой энергией. Основной фактор, влияющий на эту величину, температура входного и выходного контуров. Система будет работать лучше, если разница между данными параметрами будет большая.

5 основных выгод для владельцев установок

К преимуществам систем обогрева с тепловыми насосами относят такие:

  1. Экономическая эффективность. При затратах 1 кВт электрической энергии можно получить 3-4 кВт тепловой. Это усредненные показатели, т.к. коэффициент преобразования тепла зависит от типа оборудования и особенностей конструкции.
  2. Экологическая безопасность. При работе тепловой установки в окружающую среду не попадают продукты сгорания или другие потенциально опасные вещества. Оборудование озонобезопасно. Его применение позволяет получить тепло без малейшего вреда для экологии.
  3. Универсальность применения. При установке систем отопления, работающих от традиционных источников энергии, владелец дома попадает в зависимость от монополистов. Солнечные батареи и ветрогенераторы не всегда рентабельны. Зато тепловые насосы можно устанавливать где угодно. Главное – правильно выбрать тип системы.
  4. Многофункциональность. В холодное время года установки отапливают дом, а в летнюю жару способны работать в режиме кондиционеров. Оборудование применяют в системах ГВС, подключают к контурам теплых полов.
  5. Безопасность эксплуатации. Теплонасосам не требуется топливо, при их работе не выделяются токсичные вещества, а предельная температура узлов оборудования не превышает 90 градусов. Эти отопительные системы не опаснее холодильников.

Идеальных приборов не существует. Тепловые насосы надежны, долговечны и безопасны, но их стоимость напрямую зависит от мощности.

Качественное оборудование для полноценного обогрева и горячего водоснабжения дома 80 м.кв. обойдется примерно в 8000-10000 евро. Самоделки маломощны, их можно использовать для отопления отдельных комнат или подсобных помещений.

Теплонасосы способны прослужить 30 лет и более. Особенно рентабельно их применение для ГВС, а также в комбинированных отопительных системах, включающих теплые полы.

Оборудование надежно и редко ломается

Если оно самодельное, то важно подобрать качественный компрессор, лучше всего – от холодильника или кондиционера проверенной марки

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий