Какие виды бывают
Существует два способа циркуляции воздуха в системе: естественный и принудительный. Разница в том, что в первом случае прогретый воздух движется в соответствии с законами физики, а во втором — при помощи вентиляторов. По способу воздухообмена устройства делятся на:
- рециркуляционные — используют воздух непосредственно из помещения;
- частично рециркуляционные — частично используют воздух из помещения;
- приточные, использующие воздух с улицы.
Особенности системы Антарес
Принцип работы Антарес комфорт такой же, как и у других систем воздушного отопления.
Воздух нагревается агрегатом АВН и по воздуховодам с помощью вентиляторов распространяется по помещениям.
Назад воздух возвращается по обратным воздуховодам, проходя через фильтр и коллектор.
Процесс циклический и происходит бесконечно. Смешиваясь с тёплым воздухом из дома в рекуператоре, весь поток идёт обратным воздуховодом.
Преимущества:
- Низкий уровень шума. Все дело в современном немецком вентиляторе. Строение его обратно загнутых лопаток слегка подталкивают воздух. Он не ударяется в вентилятор, а словно обволакивает. Кроме того, предусмотрена толстая звукоизоляция АВН. Совокупность этих факторов делает работу системы почти бесшумной.
- Скорость прогрева помещения. Обороты вентилятора регулируются, что даёт возможность установить полную мощность и быстро прогреть воздух до желаемой температуры. Уровень шума заметно повысится пропорционально скорости подаваемого воздуха.
- Универсальность. При наличии горячей воды, система Антарес комфорт способна работать с любым видом обогревателя. Предусмотрена возможность установить и водяной, и электрический нагреватель одновременно. Это очень удобно: при исчезновении одного источника питания, перейти на другой.
- Ещё одной особенностью является модульность. Это значит, что Антарес комфорт состоит из нескольких блоков, что приводит к снижению веса и простоте в установке и обслуживании.
При всех достоинствах, Антарес комфорт не имеет недостатков.
Volcano или Вулкан
Соединённые вместе водный калорифер и вентилятор — так выглядят отопительные агрегаты польской фирмы Volkano. Работают они от воздуха в помещении и не используют уличного.
Фото 2. Прибор от производителя Volcano предназначенный для воздушных систем отопления.
Нагретый тепловым вентилятором воздух равномерно распределяется через предусмотренные жалюзи в четырёх направлениях. Специальные датчики поддерживают нужную температуру в доме. Отключение происходит автоматически, когда в работе агрегата нет необходимости. На рынке представлено несколько моделей тепловых вентиляторов Volkano разных типоразмерах.
Особенности воздушно-отопительных агрегатов Volkano:
- качество;
- доступная цена;
- бесшумность;
- возможность установки в любом положении;
- корпус из износостойкого полимера;
- полная готовность к монтажу;
- три года гарантии;
- экономичность.
Отлично подойдёт для обогрева заводских цехов, складов, больших магазинов и супермаркетов, птицефабрик, больниц и аптек, спорткомплексов, теплиц, гаражных комплексов и церквей. В комплекте идут схемы подключения, позволяющие сделать монтаж быстрым и лёгким.
Онлайн-расчет мощности электрического калорифера
Расход тепла вентиляционным электрокалорифером на подогрев приточного воздуха. В поля онлайн-калькулятора вносятся показатели: объем проходящего через электрический канальный калорифер холодного воздуха, температура входящего воздуха, необходимая температура на выходе из электрического калорифера. По результатам онлайн-расчета калькулятора выводится требуемая мощность электрического нагревательного модуля для соблюдения заложенных условий.
1 поле. Объем проходящего через канальный электронагреватель приточного воздуха, м³/ч 2 поле. Температура воздуха на входе в электрический калорифер, °С 3 поле. Необходимая температура воздуха на выходе из электрокалорифера, °С 4 поле. Требуемая мощность электрического калорифера (расход тепла на подогрев приточного воздуха) для введенных данных
Принцип работы водяного калорифера
Приспособления для системы вентиляции, которые работают с использованием воды, устанавливают только в случае наличия отрегулированной и налаженной работы системы теплообеспечения или ГВС. Агрегат может подогревать воздушные массы до температуры +70…+100°С. Нагретый воздух используют в качестве источника дополнительного тепла на больших площадях – спортзалах, складах, супермаркетах, павильонах, производственных помещениях и теплицах.
Принцип работы приточной вентиляции с водяным калорифером похож на работу аналогичного бытового прибора для обогрева помещения, только вместо электрической спирали в качестве теплообменника выступает змеевик из металлических трубок, в которых циркулирует теплоноситель.
При этом сам процесс подогрева воздушных масс выглядит следующим образом:
- горячая жидкость из отопительной системы или сетей ГВС, подогретая до 80-180 градусов, идет в трубчатый теплообменник, который изготовлен из меди, стали, биметалла или алюминия;
- теплоноситель нагревает трубки, а они в свою очередь отдают тепловую энергию воздушным массам, проходящим через теплообменник;
- для равномерного распределения нагретого воздуха по помещению в приборе стоит вентилятор (он же отвечает за обратную подачу воздушных масс в калорифер).
Если все уже надоело и не знаете во что, еще поиграть, то можно попробовать скачать игровые автоматы 1xBet и насладиться новыми впечатлениями с популярной БК.
Благодаря использованию уже нагретого воздуха из отопительной системы агрегат экономит средства. Водяной нагреватель для вентиляционных сетей можно назвать прибором, который объединяет в себе качества конвектора, вентилятора и теплообменника.
Нагреватели для вентиляционных сетей работают только с воздухом, степень запыленности которого не превышает 0,5 мг/м³, а минимальная температура не ниже -20°С. Прибор монтируют внутри вентиляционной шахты и подбирают по ее параметрам (сечение и форма). Иногда для достижения нужной температуры воздуха последовательно устанавливают несколько менее мощных устройств, если одну конструкцию подходящей производительности не получится встроить в воздуховод.
Преимущества и недостатки
Целесообразно использование водяных нагревателей на производственных предприятиях, имеющих собственные коммуникации теплоснабжения. В этом случае агрегат будет максимально рентабельным.
К преимуществам устройств для подогрева воздуха причисляют следующее:
- По сложности и трудоемкости монтаж водяного теплообменника можно сравнить с прокладкой труб отопления. Иными словами, проблем с установкой не возникнет.
- Нагретые воздушные массы быстро отапливают даже помещение значительной площади.
- Отсутствие сложных механических и электрических узлов обеспечивает безопасную работу.
- Направлением потоков теплого воздуха можно управлять.
- Во время работы нет повышенных нагрузок на электросеть, а поломка не спровоцирует возгорание. К слову, агрегат очень редко выходит из строя, потому что не имеет быстроизнашивающихся деталей.
- Благодаря использованию горячей жидкости из тепловой сети техника не требует регулярных финансовых вложений.
Главный недостаток связан с тем, что калорифер нельзя использовать в бытовых целях в многоквартирных домах. Но в качестве альтернативы применяют аналогичные электрические устройства. Техника имеет внушительные размеры и требует контроля над температурой теплоносителя в тепловой сети, к которой она подключена. Подобное вентиляционное оборудование разрешено устанавливать только в местах, где температура окружающего воздуха не опускается ниже нуля градусов.
Классификация калориферов по разным признакам
Калориферы включают в конструкцию системы отопления для нагрева воздуха. Существуют следующие группы этих приборов по виду используемого теплоносителя: водяные, электрические, паровые. Электрические приборы имеет смысл использовать для помещений площадью не более 100 м?. Для зданий с большими площадями более рациональным выбором будут калориферы водяные, которые функционируют только при наличии источника тепла.
Наиболее популярны паровые и водяные калориферы. Как первые, так и вторые по форме поверхности делятся на 2 подвида: ребристые и гладкотрубные. Ребристые калориферы по геометрии ребер бывают пластинчатыми и спирально-навивными.
По конструкционному исполнению эти приборы могут быть одноходовыми, когда теплоноситель в них совершает движение по трубкам, придерживаясь постоянного направления и многоходовыми, в крышках которых имеются перегородки, вследствие чего направление движение теплоносителя постоянно меняется. В продажу поступают 4 модели калориферов водяных и паровых, отличающиеся площадью поверхности нагрева:
- СМ — самая малая с одним рядом труб;
- М — малая с двумя рядами труб;
- С — средняя с трубами в 3 ряда;
- Б — большая, имеющая 4 ряда труб.
Водяные калориферы в процессе эксплуатации выдерживают большие температурные колебания — 70-110?. Для хорошей работы калорифера этого типа вода, циркулирующая в системе должна быть нагретой максимум до 180?. В теплое время года калорифер может выполнять роль вентилятора.
Как рассчитать мощность прибора для нагрева воздуха
Калорифер обеспечивает и поддерживает желаемый температурный режим в помещении. Он устанавливается в систему приточной вентиляции, кондиционирования и отопления, способен обогревать значительные площади, поскольку отличается большой мощностью и производительностью. Чтобы прибор функционировал корректно, необходимо выполнить расчет мощности калорифера до его приобретения.
- Классификация калориферов
- Водяные
- Паровые
- Электрические
- Достоинства и недостатки
- Конструкция калориферов разных видов
- Водяные и паровые калориферы
- Расчет мощности калорифера
- Водяной прибор
- Паровой калорифер
- Электрический калорифер
Формулы для расчета воздухонагревателя
Расчет нагревателя воздуха (калорифера) для систем вентиляции можно двумя способами: с использованием температур или с использованием энтальпий.
Формула мощности нагревателя, если известны начальная и конечная температуры:
N = 0,338 · G [м 3 /ч] · (t2 – t1), где
- 0,338 – коэффициент, который учитывает плотность воздуха, его теплоемкость и другие величины;
- G – расход воздуха, выраженный в м 3 /ч;
- t1, t2 – начальная и конечная температуры воздуха, °С.
Формула мощности нагревателя, если известны начальная и конечная энтальпии:
N = G [м 3 /ч] · (i2 – i1) / 3, где
- 3 – коэффициент, который учитывает плотность воздуха и перевод часов в секунды и другие величины;
- G – расход воздуха, выраженный в м 3 /ч;
- i1, i2 – начальная и конечная энтальпии воздуха, кДж/кг.
Расчёт мощности
Процесс нагрева воздуха в виде графика
Методика вычисления заключается в подборе аппарата с такими параметрами, чтобы на выходе температура воздуха соответствовала нормативным значениям, а запас мощности позволял бесперебойно работать при пиковых нагрузках, но при этом не страдала кратность и скорость воздухообмена. Проектировщик начинает рассчитывать мощность только после получения всех исходных данных:
- Объёма воздуха, проходящего через аппарат за единицу времени. Измеряется соответственно кг/ч или м3/ч.
- Температуры приточки. Берётся минимальное значение для зимнего периода.
- Требуемой по нормам или индивидуальным пожеланиям заказчика температуре воздуха на выходе.
- Максимальной температуре, до которой может нагреться тепловой носитель.
Правила вычислений
Теплотехнический расчёт канального нагревателя начинается с определения двух параметров: первый – площадь поперечного сечения тепловой установки; второй – мощность, необходимая для нагрева поверхности заданного размера.
Площадь вычисляется по формуле:
Aф = Lp / 3600×(ϑρ), где
L – максимальное значение приточки для поддержки параметров вытяжки, м3/ч;
Р – нормативная плотность воздуха, кг/м3;
Θρ – скорость движения воздуха на каждом участке, определяемая из аэродинамического расчета.
Полученное значение подставляется в таблицу, где указаны возможные варианты сечения калориферов, значения округляется в большую сторону.
Таблица подбора по площади сеченияЕсли результаты вычислений выходят за рамки табличных значений, то проектировщики идут по другому пути: закладывается несколько параллельных канальных нагревателей, суммарная площадь сечений которых равна расчётному значению.
Формула скорости воздушных масс, необходимая для подбора площади нагревательного элемента, следующая:
ϑρ = Lρ / 3600×Аф.факт
На следующем этапе определяется объем тепловой энергии, необходимый для прогрева приточки:
Q = 0.278×Gc× (tп – tн), где
Q – объём тепловой энергии, Вт;
G – расчётный показатель расхода воздуха, кг/ч;
с – удельная теплоёмкость, в данном случае берётся 1.005 кДж/кг °С;
tп – температура приточки, °С;
tн – температура воздуха на входе.
Расход воздуха G = Lρн. Это связанно с местом установки вентилятора. Он находится до калорифера, а, следовательно, используется нормативное значение плотности воздушных масс снаружи помещения.
Далее вычисляются затраты горячей воды на отдачу тепла холодному:
Gw = Q / cw×(tг – t0), где
cw – тепловая ёмкость воды, кДж/кг °С;
tг – температура теплоносителя (воды),С;
t0 – расчётная температура воды в обратном трубопроводе,С.
Теплоемкость жидкости можно узнать из справочной литературы. Параметры теплового носителя зависят от параметров среды.
Зная Gw, можно вычислить скорость движения воды по трубам:
w = Gw / 3600×ρw×Aф, где
Aф – размер сечения теплообменника, м²;
ρw – плотность воды при средней температуре теплового носителя, С.
Средняя температура:
(tг + t0) / 2
Рассчитать скорость движения теплоносителя можно по формуле, указанной выше. Она справедлива для простой системы последовательного подключения нагревательных элементов. В случае использования параллельной схемы, толщина трубопровода увеличится в два или более раз, а средняя скорость движения уменьшится.
Кроме подбора калорифера выполняется расчёт тепловых потерь по укрупнённым показателям. Основная формула:
Qзд=q×V× (tп-tн), где
q – тепловая характеристика объекта, Вт/(м3ּоС);
V – объём объекта по внешней стороне ограждающих конструкций, м3;
(tп-tн) – разность температуры основных помещений, оС.
Расчёт поверхности нагрева
Основная формула площади нагревательной поверхности канального устройства:
Amp = 1.2Q / K× (tср.т – tср.в), где
К – коэффициент передачи тепла от калорифера холодному воздуху, Вт/(м°С);
tср.т – средний показатель температуры теплового носителя, С;
tср.в – средний показатель температуры приточки, С;
число 1,2 – коэффициент запас. Вводится в связи с остыванием воздуховодов.
Иногда одного калорифера недостаточно или площадь сечения слишком большая. Тогда в расчёт берётся несколько однотипных устройств.
На последнем этапе определяется, сколько тепла может выдать канальный нагреватель:
Qфакт = К× (tср.т – tср.в)×Nфакт×Ak
Особенность методики для паровых нагревателей
Принцип вычислений не меняется. Отличие только в способе определения расхода теплового носителя для нагрева холодного воздуха:
G = Q / r, где
r – тепловая энергия, получаемая в процессе конденсации пара.
Второй этап
2.Зная теплопотери, рассчитаем расход воздуха в системе используя формулу
G = Qп / (с * (tг-tв))
G- массовый расход воздуха, кг/с
Qп- теплопотери помещения, Дж/с
C- теплоемкость воздуха, принимается 1,005 кДж/кгК
tг- температура нагретого воздуха (приток), К
Напоминаем что К= 273 °С, то есть чтоб перевести ваши градусы Цельсия в градусы Кельвина нужно к ним добавить 273. А чтоб перевести кг/с в кг/ч нужно кг/с умножить на 3600.
Читать далее: Двухтрубная система отопления схема
Перед расчетом расхода воздуха необходимо узнать нормы воздухообмена для для данного типа здания. Максимальная температура приточного воздуха 60°С, но если воздух подается на высоте меньше 3 м от пола эта температура снижается до 45°С.
Еще одно, при проектировании системы воздушного отопления возможно использование некоторых средств энергосбережения, таких как рекуперация или рециркуляция. При расчете количества воздуха системы с такими условиями нужно уметь пользоваться id диаграммой влажного воздуха.
Виды
Нагреватели для приточной вентиляции классифицируются по виду источника тепла и бывают водяными, паровыми и электрическими.
Водяные модели
Используются во всех типах вентсистем и могут иметь двух- и трёхрядное исполнение. Приборы устанавливают в системы вентиляции помещений, площадь которых превышает 150 квадратных метров. Данный вид калориферов является абсолютно пожаробезопасным и наименее энергозатратным, что обусловлено возможностью использования в качестве теплоносителя воды из отопительной системы.
Принцип работы водяных нагревателей сводится к следующему: уличный воздух забирается сквозь воздухозаборные решётки и подаётся по воздуховоду к фильтрам грубой очистки. Там воздушные массы очищаются от пыли, насекомых и мелкого механического мусора, и поступают в калорифер. В корпусе нагревателя установлен медный теплообменник, состоящий из звеньев, располагающихся в шахматном порядке, и оснащённых алюминиевыми пластинами. Пластины значительно увеличивают теплоотдачу медного змеевика, чем существенно повышают КПД прибора. В качестве теплоносителя, протекающего через змеевик, может выступать вода, антифриз или водно-гликолевый раствор.
Потоки холодного воздуха, проходя через теплообменник, забирают тепло от металлических поверхностей и переносят его в помещение. Использование водяных нагревателей позволяет нагревать воздушные потоки до 100 градусов, что предоставляет широкие возможности для их применения в спортивных сооружениях, торговых центрах, подземных паркингах, складах и теплицах.
Наряду с очевидными преимуществами, водяные модели имеют ряд недостатков. К минусам приборов относят риск перемерзания воды в трубах при резком понижении температур, и невозможность использования подогрева в летний период, когда система отопления не функционирует.
Паровые модели
Устанавливаются на предприятиях промышленного сектора, где есть возможность производства большого количества пара для технических нужд. В приточных вентсистемах бытового назначения такие калориферы не используются. В роли теплового носителя данных установок выступает пар, что объясняет мгновенный нагрев проходящих потоков и высокий КПД паровых калориферов.
Чтобы этого не произошло, все теплообменники в процессе производства подвергаются тесту на герметичность. Испытания осуществляются при помощи струй холодного воздуха, подаваемых под давлением в 30 Бар. Тепловой обменник при этом помещается в резервуар с тёплой водой.
Электрические модели
Являются наиболее простым вариантом нагревателей, и устанавливаются в вентсистемы, обслуживающие небольшие пространства. В отличие от калориферов водяного и парового типов, электрокалорифер не предполагает обустройства дополнительных коммуникаций. Для их подключения достаточно иметь поблизости розетку напряжением 220 В. Принцип работы электрокалориферов не отличается от принципа действия других нагревателей и заключается в нагреве воздушных масс, проходящих сквозь ТЭНы.
Даже при незначительном понижении этого показателя происходит перегрев электронагревательного элемента, и его поломка. Более дорогие модели оборудованы биметаллическими термовыключателями, отключающими элемент в случае явного перегрева.
Плюсами электрических калориферов является простой монтаж, отсутствие необходимости подведения трубопровода, и независимость от отопительного сезона. К минусам относят большой расход электроэнергии и нецелесообразность установки в мощные вентиляционные системы, обслуживающие большие пространства.
Расчет необходимой мощности для обогрева шкафов автоматики
Вычисление мощности нагрева производится по следующей формуле:
Р = А * k * ( Твнутр – Твнеш ) — Qv
Здесь Р – необходимая мощность нагрева
А – площадь эффективной поверхности теплообмена
Твнутр – Твнеш – разница температур воздуха внутри и снаружи шкафа
k – коэффициент теплоотдачи корпуса шкафа управления
Qv – суммарное тепловыделение электроприборов в шкафу
Полученная мощность используется для подбора моделей обогревателей шкафа автоматики ОША. Калькулятор, предоставленный на данной странице, поможет вам легко и быстро произвести все необходимые вычисления для определения мощности обогрева шкафа автоматики. Для более точного вычисления вы также можете обратиться к нашим специалистам по телефону или при помощи форм обратной связи. Обращайтесь к нам и получите полную консультацию по обогреву шкафов управления абсолютно бесплатно!
РАСЧЕТ ТЕПЛОВОЙ МОЩНОСТИ ДЛЯ ВЫБОРА НАГРЕВАТЕЛЯ
К — Коэффициент тепловых потерь (зависит от типа конструкции и изоляции помещения):
Без теплоизоляции ( К=3,0-4,0 ) — Деревянная конструкция или конструкция из гофрированного металлического листа.
Простая теплоизоляция ( К=2,0-2,9 ) — Здание с одинарной кирпичной кладкой, упрощенная конструкция окон и крыши.
Средняя теплоизоляция ( К=1,0-1,9 ) — Стандартная конструкция. Двойная кирпичная кладка, крыша со стандартной кровлей, небольшое кол-во окон.
Высокая теплоизоляция ( К=0,6-0,9 ) — Кирпичные стены с двойной теплоизоляцией, небольшое кол-во окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала.
Пример:
Объем помещения: 5 х 16 х 2,5 = 200
∆Т: Температура наружного воздуха -20 °С. Требуемая температура внутри помещения +25 °С. Разница между температурами внутри и снаружи +45 °С.
К: Рассмотрим вариант со средней теплоизоляцией (1-1,9). Выберите то значение, которое на ваш взгляд, наиболее соответствует вашему помещению. Чем хуже теплоизоляция, тем больший коэффициент нужно выбирать. Например 1,7.
Расчет: 200 х 45 х 1,7 = 15 300 ккалч
1 кВт = 860 ккалч, соответственно 15 300860 = 17,8 кВт.
Газовые и дизельные калориферы прямого нагрева, можно использовать только в хорошо проветриваемых помещениях, или на открытых пространствах. Дизельные калориферы непрямого нагрева, можно использовать в закрытых помещениях, при условии отвода сгораемых газов за пределы помещения.
Таблица Мощности для помещений:
Расчет мощности можно сделать с помощью данной схемы (ВЫ можете скачать и распечать схему ниже)
Расчет-онлайн электрических калориферов. Подбор электрокалориферов по мощности
На данной странице сайта представлен онлайн- расчет электрических калориферов. В режиме онлайн можно определить следующие данные: — 1. требуемую мощность (производительность по теплу) электро калорифера для приточной отопительной установк и . Базовые параметры для расчета: объем (расход, производительность) нагреваемого воздушного потока, температура воздуха на входе в электрический нагреватель, желаемая температура на выходе — 2. температуру воздуха на выходе из электрического калорифера . Базовые параметры для расчета: расход (объем) нагреваемого воздушного потока, температура воздуха на входе в элект рокалорифер , фактическая (установленная) тепловая мощность используемого электрического модуля
1 . Онлайн- расчет мощности электрического калорифера (расхода тепла на обогрев приточного воздуха)
В поля вносятся показатели: объем проходящего через электрокалорифер холодного воздуха (м3/час), температура входящего воздуха, необходимая температура на выходе из электрического калорифера. На выходе (по результатам онлайн- расчета калькулятора ) выводится требуемая мощность электрического нагревательного модуля для соблюдения заложенных условий.
1 поле. Объем проходящего через электронагреватель приточного воздуха (м3/час)2 поле. Температура воздуха на входе в электрический калорифер ( °С )
3 поле. Необходимая температура воздуха на выходе из электрокалорифера (°С)
4 поле (результат) . Требуемая мощность электрического калорифера (расход тепла на подогрев приточного воздуха) для введенных данных
2 . Онлайн- расчет температуры воздуха на выходе из электрического калорифера
В поля вносятся показатели: объем (расход) нагреваемого воздуха (м3/час), температура воздуха на входе в электрокалорифер, мощность подобранного электрического воздухонагревателя. На выходе (по результатам онлайн- расчета) показывается температура выходящего нагретого воздуха.
1 поле. Объем проходящего через калорифер приточного воздуха (м3/час)2 поле. Температура воздуха на входе в электрический калорифер ( °С )
3 поле. Тепловая мощность подобранного воздухоподогревателя ( кВт )
4 поле (результат) . Температура воздуха на выходе из электрокалорифера (°С)
Онлайн- подбор электрического калорифера по объему нагреваемого воздуха и тепловой мощности
Ниже выложена таблица с номенклатурой электро калориферов производства нашего предприятия. По таблице можно ориентировочно подобрать подходящий для ваших данных электрический модуль . Изначально ориентируясь на показатели объема нагрева емого воздуха в час (производительности по воздуху), можно подобрать промышленный электрический калорифер для наиболее распространенных тепловых режимов. На каждый отопительный модуль серии СФО представлен наиболее приемлемый (для этой модели и номера) диапазон нагреваемого воздуха, а также некоторые диапазоны температуры воздуха на входе и выходе из нагревателя. Кликнув мышкой по названию выбранного электрического воздухоподогревателя, можно перейти на страницу с теплотехническими характеристиками данного электрического промышленного калорифера .
Наименование электро калорифера
Установленная мощность, кВт
Диапазон производительности по воздуху, м³/ч
Температура входящего воздуха, °С
Диапазон т емператур ы выходящего воздуха, °С (в зависимости от объема воздуха)