Как произвести расчет ветрогенератора по формулам — рассмотрим вопрос

Расчет длинны лопасти ветрогенератора

Лопасти в ветрогенераторе являются одной из основных частей. От их размеров и формы зависит мощность генерирующего ток мотора и обороты. Желающие поставить ветрогенератор или ферму этих устройств в первую очередь сталкиваются с вопросом – какой длинны лопасти подобрать? Их оптимальная форма с учетом вида этих изделий и аэродинамики уже давним давно разработана

По этой причине для заказчика важной является именно длина лопасти, которая определяет мощность будущей конструкции.

При выборе важно учитывать, что количество оборотов ветроколеса в минуту зависит от его диаметра и длинны лопасти. Важным показателем также является быстроходность ветроколеса – отношение скорости перемещения конца лопасти к скорости ветрового потока, на нее воздействующего

Этот показатель указывает на то, сколько оборотов в единицу времени выполнит ветроколесо при определенной скорости ветра.

Поэтому ветрогнераторы с одинаковой быстроходностью могут иметь разные по размерам ветроклесо и лопасти. Это надо учитывать при определении, какой длинны лопасти нужно купить для ветроклеса определенных размеров, чтобы генератор делал требуемое число оборотов в минуту.


Как вращаются лопасти под действием ветра?Источник alternativenergy.ru

Генераторы могут иметь разную мощность. При этом для обеспечения токов с требуемыми характеристиками на выходе им необходимо, чтобы ветроколесо вращалось с определенной скоростью. Если эта характеристика отличается от количества оборотов ветроколеса в минуту при среднегодовой скорости движения ветра, в вашем регионе, то нужно устанавливать редуктор, повышающий их число.

Важное значение имеет и количество лопастей. Конечно, две лопасти обеспечивают минимальный вес конструкции, снижают ее упругость, но при этом минимальная скорость ветра, при которой они буду начинать вращение, будет достаточно высокой

Поэтому в местах, где часто дуют сильные ветра, могут устанавливаться и двухлопастные ветрогенераторы, если нет, следует рассмотреть вариант ветрогенератора с тремя и с большим количеством лопастей.


Домашние ветрогенераторы Источник winder.ua

Также нужно понимать, что на длину лопасти влияет и материал ее изготовления, обуславливающий вес одного изделия, его прочность, способность не гнуться при очень сильных ветровых нагрузках. Чем длиннее лопасть, тем больше она будет весить и, естественно, ее труднее будет привести в действие и обеспечивать вращение с определенной скоростью. Конечно, если планируется установить ветрогенератор низкой мощности, подходящий для бытового использования, то этот показатель можно игнорировать.

Некоторые считают, что чем больше лопастей, тем выше скорость вращения ветроколеса. На самом деле это не так, по той причине, что каждая лопасть ометает по ходу движения одну и ту же округлую плоскость и преодолевает одинаковое сопротивление воздуха.

Как видим, чтобы осуществить правильно расчет лопастей, требуется обладать обширными знаниями и располагать определенными данными. Некоторые параметры можно получить расчетным путем, часть попросту можно узнать только после запуска ветряка. При этом для ясности вопроса, некоторые виды ветрогенерирующих устройств не имеют рассчитанной математически модели вращения. По этой причине расчеты могут оказаться в конечном итоге бесполезными. Все равно придется по сто раз дорабатывать и переделывать после монтажа.


Лопасти в ветровом колесе Источник ru.istabreeze.store

Одним из доступных вариантов для выполнения расчетов является онлайн калькулятор. Используя его, можно получить готовый результат в считанные секунды. Пользоваться им очень просто. Для этого необходимо только подставить требуемые данные в определенные окошечка. Но и он не гарантирует идеальной точности проведения расчётов, по той причине, что некоторые очень тонкие величины невозможно получить заранее до монтажа, пока проявятся определенные эффекты. Поэтому зачастую прибегают к экспериментальному выбору размеров.

Зачастую для ориентировочного расчета используется следующая таблица.

Мощность ветроклеса, в
ваттах
Диаметр ветроколеса при
определенном количестве лопастей в метрах
2346816
1021,641,421,1610,72
202,822,3221,641,421
303,442,821,4421,721,22
4043,282,842,3221,42
504,483,683,182,61,241,58
604,943,482,62,441,74
705,34,343,763,082,641,88
805,664,6443,282,822
9064,924,263,4832,12
1006,345,24,53,683,162,24
30010,948,987,766,345,463,88
5001411,489,948,167

Виды

На данный момент в серийном производстве существует 2 вида ветрогенераторов:

  1. Карусельные — ось вращения располагается вертикально по отношении к направлению ветра. Имеют ряд преимуществ по сравнению с классическими — горизонтальными:
  2. Вырабатывают электроэнергию при небольшой силе ветра;
  3. Не нуждаются в сложных, активных системах направления на поток ветра, как следствие, идеально подходят для местности с турбулентными воздушными потоками;.
  4. Некоторые промышленные модели не нуждаются в высокой мачте, сама ось для лопастей является мачтой. Поэтому удобны в обслуживании;
  5. Низкий уровень шумового загрязнения, до 30 дБ;
  6. Отличный внешний вид.

Но они имеют серьёзный недостаток — тихоходность. Для его преодоления применяют повышающие редукторы, что несколько снижает КПД.

  1. Крыльчатые — горизонтальные ветряки. Этот вид ветрогенератора наиболее распространён при использовании в промышленной выработке электроэнергии.

Преимущества:

  • Большая скорость вращения, это позволяет соединяться с генератором, что увеличивает КПД;
  • Простота изготовления;
  • Большое разнообразие моделей.

Недостатки:

  • Высокий уровень шумового и ультразвукового загрязнения. Это может быть опасно для здоровья людей. Поэтому генерирующие промышленные мощности располагают в безлюдных местах;
  • Необходимость применять стабилизатор и устройства наведения на поток ветра;
  • Скорость вращения находится в обратной пропорции к количеству лопастей, поэтому в промышленных моделях редко используют более трёх лопастей.

Работы по преодолению последнего недостатка ведутся уже довольно давно. Было разработано и выпущено несколько небольших моделей ветрогенераторов. Их КПД довольно высокий для своего класса мощности, из-за оригинального строения лопасти.

Площадь сопротивления ветру в такой модели минимальна, она может работать при силе ветра и 2 м/с и выдавать при этом 30 Вт. Но учитывая, что на трение и иные потери, в моделях такого класса, уходит до 40% энергии, оставшихся 18 Вт не хватит даже на освещение одной лампочкой. Для использования на даче или в частном доме нужно, что-то серьёзнее.

Какие конструкции имеют наивысший КПД?

На сегодня наивысший КПД горизонтальных ветровых установок, обладающих большей эффективностью, чем вертикальные ветряки, равен 0,4. Для вертикальных устройств среднее значение считается равным 0,38, т.е. показатели близки и не находятся на большом удалении друг от друга. Периодически появляются сообщения о разработках устройств, КПД которых превышает существующие показатели в 2 или более раз, что весьма сомнительно и не подтверждается более ничем, кроме голословных утверждений журналистов, плохо представляющих себе предмет.

Тем не менее, устройства с заметно возросшей эффективностью существуют. Они созданы в разных конструкционных вариантах, есть горизонтальные или вертикальные установки с повышенной производительностью, мощностью, остальными параметрами. Большинство таких устройств являются маломощными комплексами, предназначенными для использования в отдаленных районах и обеспечивающие отдельные дома или участки.

Известны конструкции изобретателей Онипко, Третьякова и многих других конструкторов, имеющие оригинальные и элегантные варианты увеличения производительности и, соответственно, КПД. Большинство из них пока еще находятся в стадии разработки или подготовки к массовому производству, так как активная работа в этом направлении начата относительно недавно, еще не успела полностью реализоваться в виде промышленных изделий.

Ветрогенераторы большой мощности: обзор, плюсы и минусы, нюансы

На сегодняшний день могут производиться ветряные устройства, у которых мощность ветрогенератора является достаточно большой. Ветряные установки больших мощностей используются, в основном, для промышленных нужд.

Вертикальный ветрогенератор

У данных генераторов имеются несомненные преимущества:

  • способность обеспечить необходимым количеством энергии даже средние по своей величине поселки;
  • использование энергетических ресурсов природного характера, которые просто неограниченны по своим запасам.

Недостатками данных генераторов, да и вообще всех генераторных устройств с применением силы ветра, являются:

  • неподконтрольность природных сил;
  • слишком быстрое изнашивание аккумуляторных устройств;
  • создание довольно большого шума при работе;
  • создание разнообразного рода помех для различной аппаратуры.

На данный момент существует великое множество производителей ветровых устройств по производству энергии. Приведем основные:

  1. Российский дочерний филиал предприятия  «Algatec Solar» (Германия);
  2. Отечественная фирма по производству ветряков и других типов оборудования «ЭнерджиВинд»;
  3. Московская компания с хорошим по своим качественным характеристикам оборудованием — «Сапсан-Энергия».

Конечно же, существуют и другие компании данного направления, но их перечисление займет слишком много времени.

Способы увеличения КПД

Для того, чтобы увеличить КПД ветрогенератора, надо изменить в положительную сторону его рабочие или эксплуатационные характеристики. В первую очередь, надо повысить чувствительность крыльчатки к слабым и неустойчивым ветрам. Россия считается самой богатой ветровыми ресурсами страной, но это только из-за большой площади. Средние показатели в нашей стране относительно невысокие, скорости потока слабые или средние. Это вынуждает изыскивать пути повышении эффективности крыльчатки.

Одним из интересных предложений в этой области является «лепестковый парус», разработанный Евгением Цукановым. Он предложил идею создания своеобразной односторонней мембраны для воздушного потока, свободно пропускающей ветер в одну сторону и являющейся плотной непроницаемой преградой для потока обратного направления.

Согласно разработке Цуканова, полотно лопастей состоит из сетки, покрытой лепестками. Они прикреплены одной кромкой к сетке, свободно свисают вниз, частично перекрывая друг друга. При фронтальном направлении лепестки прижимаются к сетке, образуя непроницаемую поверхность, принимающую энергию ветра в полном объеме. Если направить поток с обратной стороны, лепестки под действием ветра поднимаются и пропускают воздух без сопротивления.

Этот вариант требует некоторых промышленных мероприятий, в частности, создании технологических линий по производству подобного полотна, но сама по себе идея весьма удачно позволяет устранить воздействие ветра на обратные стороны лопастей, что очень увеличит КПД вертикальных конструкций и позволит получить от них совершенно другие результаты.

Существуют и другие способы, например, использование диффузоров или защитных колпаков, отсекающих поток с противодействующих поверхностей. Все эти варианты конструкции имеют свои достоинства и недостатки, но, в целом, они намного эффективнее традиционных образцов, поэтому нуждаются в активной доработке, запуске в промышленное производство.

Какие ветрогенераторы самые эффективные

ГоризонтальныеВертикальные
Такой вид оборудования получил наибольшую популярность, в нем ось вращения турбины располагается параллельно земле. Подобные ветрогенераторы часто называют ветряными мельницами, в них обороты лопастей осуществляются против потока ветра. Конструкция оборудования включает в себя систему для автоматического прокручивания головной части. Она требуется для поиска ветрового потока. Также необходимо устройство для поворота лопастей, чтобы для выработки электроэнергии использовать даже небольшую силу.

Применение такого оборудования более целесообразно на промышленных предприятиях, чем в быту. На практике они чаще используются для создания систем ветроэлектростанций.

Устройства такого типа на практике менее эффективны. Вращение лопастей турбины осуществляется параллельно поверхности земли независимо от силы ветра и его вектора. Направление потока также не играют роли, при любом воздействии вращательные элементы прокручиваются против него. В результате этого ветровой генератор теряет часть мощности, что приводит к снижению энергоэффективности оборудования в целом. Но в плане установки и обслуживания агрегаты, в которых лопасти расположены вертикально, более подходят для домашнего использования.

Это связано с тем, что редукторный узел и генератор монтируются на земле. К минусам такого оборудования следует отнести дорогостоящую установку и серьезные эксплуатационные затраты. Для монтажа генератора потребуется достаточно места. Поэтому использование вертикальных устройств более целесообразно в небольших частных хозяйствах.

ДвухлопастныеТрехлопастныеМноголопастные
Данный тип агрегатов характеризуется наличием двух элементов вращения. Этот вариант практически неэффективен сегодня, но достаточно распространен за счет своей надежности.Этот вид оборудования является самым распространенным. Трехлопастные агрегаты используются не только в сельских хозяйствах и промышленности, но и в частных домовладениях. Этот тип оборудования получил распространение благодаря надежности и эффективности.Последние могут иметь от 50 и более элементов вращения. Чтобы обеспечить выработку нужного объема электроэнергии, надо не само прокручивание лопастей, а вывод на необходимое число оборотов. Наличие каждой дополнительного элемента вращения обеспечивает увеличение параметра общего сопротивления ветрового колеса. В результате этого выход оборудования на необходимое количество оборотов будет проблематичным.

Карусельные устройства, оборудованные множеством лопастей, начинают вращение при небольшой силе ветра. Но их применение более актуально, если играет роль непосредственно сам факт прокручивания, к примеру, когда требуется перекачка воды. Чтобы эффективно обеспечить выработку большого количества энергии, многолопастные агрегаты не используются. Для их функционирования требуется установка редукторного устройства. Это не только усложняет всю конструкцию оборудования в целом, но и делает ее менее надежной по сравнению с двух- и трехлопастными.

С жесткими лопастямиПарусные агрегаты
Стоимость таких агрегатов более высокая за счет дороговизны производства деталей вращения. Но по сравнению с парусным оборудованием, генераторы с жесткими лопастями более надежны и характеризуются высоким ресурсом эксплуатации. Поскольку в воздухе содержится пыль и песок, на элементы вращения воздействует высокая нагрузка. При работе оборудования в стабильных условиях, ему требуется ежегодная замена антикоррозийной пленки, которая наносится на концы лопастей. Без этого элемент вращения со временем начинает терять свои рабочие свойства.Такой тип лопастей более прост в плане производства и менее затратный, по сравнению с металлом либо стеклопластиком. Но экономия при изготовлении может привести к серьезным расходам в будущем. При диаметре ветрового колеса в три метра скорость движения конца лопасти может составить до 500 км/ч, когда обороты оборудования составляют около 600 в минуту. Это — серьезная нагрузка даже для жестких деталей. Практика показывает, что элементы вращения на парусном оборудовании приходится менять часто, особенно если сила ветра высокая.

В соответствии с разновидностью роторного механизма все агрегаты можно разделить на несколько видов:

  • ортогональные устройства Дарье;
  • агрегаты с роторным узлом Савониуса;
  • устройства с вертикально-осевой конструкцией агрегата;
  • оборудование с геликоидным типом роторного механизма.

Преимущества и недостатки роторного ветрогенератора

Когда ветрогенератор сделать как надо, он будет функционировать без каких-либо ошибок. С аккумулятором на 75А и с хорошим инвертером на 1000 W, ветряк без проблем будет обеспечивать светом улицу, площадку дома, питать защитную сигнализацию, видеонаблюдение и т. д.

Ветрогенераторы такого типа имеют следующие преимущества:

  • простота монтажа;
  • небольшая себестоимость;
  • экономичность;
  • податливость к ремонту;
  • не привередлив к условиям функционирования;
  • надежность и бесшумность работы.

Минусов ветрогенератора несколько:

  • небольшая производительность ветрогенератора;
  • полная зависимость ветряка от ветра;
  • лопасти может сорвать воздушный поток.

Подготовка материалов для ветрогенератора

Первым делом нужно собрать все расходники и детали для ветряка. Сделанный вами ветрогенератор будет выдавать мощность не более 1,5 КВт. Чтобы сделать агрегат вам нужно иметь:

  • Автомобильный генератор на 12 В.
  • Гелиевый или кислотный аккумулятор на 12 В.
  • Специальный преобразователь с 12 В на 220 В и с 700 Вт на 1500 Вт.
  • Большую емкость из нержавейки или алюминия: ведро или кастрюля.
  • Простой вольтметр.
  • Болты, шайбы и гайки.
  • Реле зарядки аккумулятора от автомобиля и контрольной лампочки заряда.
  • Провода с разным сечением (2,5 мм2 и 4 мм2).
  • Хомуты, фиксирующие ветрогенератор.
  • Выключатель «кнопка» полугерметичный, на 12 В.

Кроме того, запаситесь такими инструментами:

болгаркой или ножницами по металлу; рулеткой; строительным карандашом или маркером; отверткой, дрелью, кусачками и сверлом.

Конструкторские работы ветрогенератора

Работа заключается в изготовлении ротора и переделывания шкива генератора. Этапы следующие:

Подготовьте ведро или кастрюлю. При помощи рулетки и маркера сделайте разметку, разделив емкость на 4 одинаковые части. Теперь нужно вырезать лопасти.

Обратите внимание! Работая ножницами по металлу, необходимо вырезать под них отверстие. Если же ведро сделано не из покрашенной жести или оцинковки, то можно использовать болгарку. Снизу ведра и в шкиве пометьте место, где будут отверстия

В них ввинчиваются болты. Не торопитесь, сделайте все ровно, так как при вращении может возникнуть дисбаланс. После чего сделайте отверстия. Теперь отогните лопасти. Только не забудьте учесть, в каком направлении крутится генератор. Угол изгиба лопасти влияет на площадь, которую будет встречать ветер. Это напрямую влияет на скорость и частоту оборотов ветряка. При помощи болтов, закрепите ведро на шкиве. Установите свой ветрогенератор на мачту, закрепив его хомутами. Осталось подсоединить провода и собрать цепь. На мачте зафиксируйте провода, чтобы они не болтались

Снизу ведра и в шкиве пометьте место, где будут отверстия. В них ввинчиваются болты. Не торопитесь, сделайте все ровно, так как при вращении может возникнуть дисбаланс. После чего сделайте отверстия. Теперь отогните лопасти. Только не забудьте учесть, в каком направлении крутится генератор. Угол изгиба лопасти влияет на площадь, которую будет встречать ветер. Это напрямую влияет на скорость и частоту оборотов ветряка. При помощи болтов, закрепите ведро на шкиве. Установите свой ветрогенератор на мачту, закрепив его хомутами. Осталось подсоединить провода и собрать цепь. На мачте зафиксируйте провода, чтобы они не болтались.

Для подсоединения аккумулятора возьмите провода, сечение которых 4 мм2. Рекомендуемый размер – не больше 1 м. А благодаря проводам с 2,5 мм2 подключите свет и приборы. Не забудьте установить инвертер (преобразователь). Подключите прибор в сеть к контактам №7 и №8, показанным на схеме ниже. Пользуйтесь проводами 4 мм2.

Вот и все, теперь ваш ветрогенератор готов к работе. Не может не радовать то, что он сделанный своими руками.

От чего зависит КПД ветрогенератора?

Как уже говорилось, КПД ветрогенератора является производным от его технического состояния, вида турбины, конструктивных особенностей данной модели. Из школьного курса физики известно, что КПД — это отношение полезной работы к общей работе. Или отношение энергии, затраченной на выполнение работы, к энергии, полученной в результате.

В этом отношении возникает интересный момент — используемая энергия ветра получена совершенно бесплатно, никаких усилий со стороны пользователя приложено не было. Это делает КПД чисто теоретическим показателем, определяющим чисто конструктивные качества устройства, тогда как для владельцев в большей степени важны эксплуатационные характеристики

То есть, возникает ситуация, в которой КПД не столь важен, все внимание отводится чисто практическим задачам

Тем не менее, при изменениях рабочих параметров в ту или иную сторону, автоматически меняется и КПД, что свидетельствует о его взаимосвязанности с общим состоянием устройства.

Коэффициент использования энергии ветра

Следует отметить, что для ветрогенераторов существует свой, специфический показатель эффективности — КИЭВ (Коэффициент Использования Энергии Ветра). Он обозначает, какой процент воздушного потока, проходящего в рабочем сечении, непосредственно воздействует на лопасти ветряка. Или, если говорить более наукообразно, он демонстрирует отношение мощности, полученной на валу устройства, к мощности потока, воздействующего на ветровую поверхность рабочего колеса. Таким образом, КИЭВ является специфическим, применительным только для ветрогенераторов, аналогом КПД.

На сегодняшний день значения КИЭВ от изначального 10-15 % (показатели старинных ветряных мельниц) возросли до 356-40 %. Это связано с усовершенствованием конструкции ветряков и появлением новых, более эффективных материалов и технических деталей, узлов, способствующих уменьшению потерь на трение или прочие тонкие эффекты.

Теоретические исследования определили максимальный коэффициент использования энергии ветра равным 0,593.

Какие конструкции имеют наивысший КПД?

На сегодня наивысший КПД горизонтальных ветровых установок, обладающих большей эффективностью, чем вертикальные ветряки, равен 0,4. Для вертикальных устройств среднее значение считается равным 0,38, т.е. показатели близки и не находятся на большом удалении друг от друга. Периодически появляются сообщения о разработках устройств, КПД которых превышает существующие показатели в 2 или более раз, что весьма сомнительно и не подтверждается более ничем, кроме голословных утверждений журналистов, плохо представляющих себе предмет.

Тем не менее, устройства с заметно возросшей эффективностью существуют. Они созданы в разных конструкционных вариантах, есть горизонтальные или вертикальные установки с повышенной производительностью, мощностью, остальными параметрами. Большинство таких устройств являются маломощными комплексами, предназначенными для использования в отдаленных районах и обеспечивающие отдельные дома или участки.

Известны конструкции изобретателей Онипко, Третьякова и многих других конструкторов, имеющие оригинальные и элегантные варианты увеличения производительности и, соответственно, КПД. Большинство из них пока еще находятся в стадии разработки или подготовки к массовому производству, так как активная работа в этом направлении начата относительно недавно, еще не успела полностью реализоваться в виде промышленных изделий.

Расчет лопастного ветрогенератора

Так как мы уже выяснили, что горизонтальный ветрогенератор значительно эффективнее, рассмотрим расчет именно его конструкции.

Энергия ветра может быть определена по формулеP=0.6*S*V³, где S – это площадь круга, описываемого концами лопастей винта (площадь ометания), выраженная в квадратных метрах, а V – расчетная скорость ветра в метрах в секунду. Также нужно учитывать КПД самого ветряка, который для трехлопастной горизонтальной схемы составит в среднем 40%, а также КПД генераторной установки, составляющий на пике токоскоростной характеристики 80% для генератора с возбуждением от постоянных магнитов и 60% – для генератора с обмоткой возбуждения. Еще в среднем 20% мощности израсходует повышающий редуктор (мультипликатор). Таким образом, окончательный расчет радиуса ветряка (то есть длины его лопасти) для заданной мощности генератора на постоянных магнитах выглядит так:
R=√(P/(0.483*V³))

Пример: Примем требуемую мощность ветроэлектростанции в 500 Вт, а среднюю скорость ветра – в 2 м/с. Тогда по нашей формуле нам придется использовать лопасти длиной не менее 11 метров. Как видите, даже такая небольшая мощность потребует создания ветрогенератора колоссальных габаритов. Для более-менее рациональных в условиях изготовления своими руками конструкций с длиной лопасти не более полутора метров ветрогенератор сможет выдавать всего лишь 80-90 ватт мощности даже на сильном ветру.

Недостаточно мощности? На самом деле все несколько иначе, так как на самом деле нагрузку ветрогенератора питают аккумуляторы, ветряк же только заряжает их в меру своих возможностей. Следовательно, мощность ветроустановки определяет периодичность, с которой она сможет осуществлять подачу энергии.

В Интернете часто можно найти статьи под броскими заголовками наподобие “Ветрогенератор для отопления дома”. На самом же деле, как вы уже могли понять из приведенных расчетов, постоянно поддерживать потребляющее несколько киловатт-часов электрическое отопление сможет разве что сеть из не одного десятка самодельных установок.

Предлагаем посмотреть еще один рассказ про ветрогенератор и его изготовление в домашних условиях

Расчет мультипликатора

Генераторная установка имеет наклонную токоскоростную характеристику: с ростом оборотов ротора увеличивается максимальная отдаваемая им мощность. Следовательно, чтобы обеспечить наибольшую эффективность тихоходного ветрогенератора, нам понадобится мультипликатор с большим коэффициентом повышения.

Для самодельной конструкции наиболее оптимальное решение – это ременной мультипликатор: он прост в изготовлении и требует минимума станочных работ. Коэффициент повышения оборотов у него будет равен отношению диаметра ведущего шкива, связанного с осью винта, к диаметру ведомого шкива генератора. При необходимости передаточное число будет легко скорректировать заменой одного из шкивов.

При проектировании мультипликатора нужно учитывать как средние обороты лопастного узла, так и токоскоростную характеристику генератора. Если мы используем серийный автомобильный генератор, то ее без труда можно найти в Интернете, с самодельными же конструкциями, скорее всего, придется идти методом проб и ошибок.

Для примера возьмем распространенный тракторный генератор, о котором уже писали выше.

Взяв расчетную мощность нашей ветроустановки в 90 ватт, найдем точку на графике, соответствующую выходу генератора на эту мощность. При номинальном напряжении 14 В нам потребуется токоотдача не менее 6,5 А – согласно графику, это произойдет при оборотах чуть выше 1000 об/мин. Пусть винт нашей конструкции вращается ветром со скоростью 60 об/мин (ветер средней силы). Значит, нам потребуется как минимум двадцатикратное соотношение диаметров шкивов – для 70-миллиметрового шкива генератора шкив ветряка должен будет иметь диаметр почти полтора метра, что неприемлемо. Это недвусмысленно намекает, насколько мала эффективность ветрогенераторов такого типа – без сложного многоступенчатого редуктора, который сам по себе приведет к большим потерям мощности, вывести автомобильный генератор на рабочий режим практически невозможно.

Для сравнения, посмотрим на характеристики генераторов, используемых в ветрогенераторах промышленного изготовления. Например, генератор на постоянных магнитах ГВУ1000, по конструкции аналогичный описанной выше самоделке из автомобильного тормозного диска, всего при 200 оборотах в минуту выдает мощность в 1 киловатт. С другой стороны, обратной стороной является его значительные вес (34 кг) и цена (почти 70 тысяч рублей).

Создание лопастей поэтапно

Производят из зачастую из ПВХ трубы. Ее диаметр составляет 11-16 см. Работы выполняются в следующем порядке:

  • труба режется на куски, соответствующие длине лопасти;
  • на отрезок по его длине начерчивается линия в стороны, от которой отменяются отрезки по 22 мм. Ширина лопасти, таким образом, получится 4,4 см;
  • с другой стороны выполнятся та же процедура;
  • концы отрезка с одной из сторон осевой полосы очерчиваются прямолинейно;
  • после этого наносится рисунок очертаний лопасти;
  • далее вырезается непосредственно сама лопасть;
  • один ее конец закругляется, стороны обрабатываются при помощи напильника или наждачной бумаги;
  • далее изделие цепляется к ступице.


Трехлопастной ветрогенератор на воде Источник ecotechnica.com.ua

В итоге должна получиться лопасть со следующими размерами:

  • равные по ширине торцы – 4,4 см;
  • ширина лопасти по средине будет составлять 5,5 см;
  • на расстоянии 0,15 длинны лопасти от ее нижней части ее ширина должна составлять 8,8 см.

Поэтому, используя эти данные, наносим на поверхность заготовки точки, которые соединяются прямыми линиями. После очерчивания можно их заменить плавными переходами. После этого вырезается шаблон, используемый в дальнейшем для изготовления прочих лопастей, так как они должны иметь одинаковые размеры, форму.

Для обеспечения возможности крепления изделия к ступице в ней проделываются специальные отверстия под болты, шурупы или винты. При этом у всех лопастей отверстия должны быть расположены в тех же местах. Это требуется для того, чтобы не был нарушен баланс крыльчатки.

Проверить, имеется ли дисбаланс, можно, установив его на ось и запустив вращение. При обнаружении нужно найти участок, который следует аккуратно подточить, постепенно добиваясь сбалансированного вращения.

Есть ли смысл вкладывать деньги в это устройство?

Да, но только в местах, где средняя (в течение года) скорость ветра составляет от 8 метров в секунду. Лопасти некоторых больших по размерам ветрогенераторов способны приходить в движение, даже если скорость ветра составляет всего 4 м/с. При этом максимальный коэффициент полезного действия достигается при скорости ветра в 12 м/с.

Мощность устройства, имеющего три лопасти, рассчитывается по следующей формуле:

– P=0,6·(¶r2)v3где,1. P – расчетная мощность, кВТ; 2. r – расстояние от центральной точки ротора до конца лопасти, м; 3. v – средняя скорость, м/с; 4. ¶=3,14. 

Установка ветрогенераторов осуществляется в пустынных местах, долинах, в морях: везде, где со стабильным постоянством дует ветер. 

Нужен ли вам ветрогенератор?

Итак, что же такое ветрогенератор или в просторечии ветряк? Кому и зачем он может быть полезен?

Даже если вы не проводите исследований во льдах Антарктиды и не разводите коров на ферме, не валите лес в тайге и не занимаетесь разработками различных месторождений в местах, где не ступала нога человека, не спешите отвечать отрицательно на вопрос:”Нужен ли вам ветрогенератор?”. Давайте сначала выясним, что это такое и каковы его возможности.

Как уже было сказано выше, ветряк — этоальтернативный источник энергии. Если говорить конкретнее, это устройство, превращающее энергию ветра в электричество. Может ли такое устройство быть полезным не в экстремальных условиях, а в обычной жизни? Конечно, может. На дачных участках, где нет электричества, в населенных пунктах, где оно есть, но вырабатывается с большими перебоями и часто отключается, ветряк, несомненно, пригодится.

В последнее время наметилась тенденция оснащать коттеджи автономным источником энергии. Ветрогенератор в таком случае — один из наиболее популярных вариантов, ведь он экологически чистый, не требует сырья и не образует отходов.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий